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Stability of an Electrified Liquid Jet*
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A capillary wave of the appropriate wavelength will cause a jet to break up into a stream of uniform-
sized droplets. In this paper, a theoretical expression for droplet size, radius, and spacing in terms of the
jet parameters and applied frequency is derived and verified experimentally. For a given jet radius and
velocity, the droplet size can be varied from its minimum value, 7min, to approximately 1.6rmin by varying
the driving frequency. Also, a theoretical expression for the charge on droplets resulting from the disintegra-
tion of a charged jet is shown to agree with the measured value of droplet charge.

I. INTRODUCTION

The breakup of a charged liquid jet has been studied
by several authors in the last century.!? In most of
this work, the response of the jet to small sinusoidal
perturbations of the surface has been analyzed to find
the wavelengths or frequencies at which the disturbance
will grow, eventually causing breakup of the jet. Very
little work, however, has been done on the nature of the
droplets produced by this breakup process.

In this paper, we will study, theoretically and experi-
mentally, the radius, velocity, spacing, and charge of
these droplets in terms of the properties of the jet and
the applied electric field. The appendix contains a new
derivation of the dispersion relation for a charged jet,
based on Rayleigh’s® technique.

II. EXPERIMENTAL APPARATUS

The droplet generator,* shown in Fig. 1, producesa
stream of uniform-sized droplets. The liquid jet is
formed by forcing liquid under pressure through a small
glass capillary. Attached to the capillary is a piezo-
electric transducer which excites a transverse and an
axial wave on the jet. The jet first exhibits a snaking
mode which couples into a bulging mode as shown in
Fig. 2. The growth of this bulging mode due to surface
tension then causes the breakup of the jet into uniform
droplets. In this photograph the jet diameter was 63.3 u
and its length was approximately 1.5 mm.

In the electrical apparatus, also shown in Fig. 1, the
signal from the oscillator is amplified to furnish the
necessary voltage for the transducer. To produce
charged droplets a variable dc-power supply applies a
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steady potential between the jet and the charging
electrode. The charge on the droplets is determined by
directing the stream into a nearly closed container,
measuring the current between the container and
ground with a micromicroammeter. If the potential on
the jet is kept constant, then all the droplets are simi-
larly charged and the charge per droplet is given by
the current divided by the number of droplets per
unit time (i.e., the driving frequency). The accuracy in
measuring the droplet charge is determined by the accu-
racy of the micromicroammeter which is within 4%,

In the calculations involving charging of droplets by
this method it is assumed that the conductivity of the
liquid-is so high that charge relaxation occurs much
faster than the time needed for a point in the jet to
move through the charging electrode. All the results in
this paper pertain to distilled water, which has a con-
ductivity of 2X10~* mhos/m, corresponding to
relaxation time of approximately 3.5 psec. The time
for a particle of the jet to move through the charging
electrode of length 1.27 cm is approximately 2.1 msec
for a jet velocity of 600vcm/sec. Hence, the charge
relaxation time for water is approximately three orders
of magnitude less than the mechanical-time constant
for the jet.

III. THE BREAKUP OF THE JET

The previous section describes how the jet, which is
excited at a steady frequency f, breaks up into droplets
under the influence of the surface tension. In this section
we shall attempt to find the radius, velocity, and
spacing of these droplets.

In each cycle of the driving frequency, more than one -
droplet may be created as a result of nonlinearities in
the exciter or in the fluid motion which produce har-
monics of the driving frequency. If any of these har-
monic frequencies correspond to unstable disturbances,
two or more unstable wavelengths will grow on the jet,
producing several satellite droplets in every cycle.
These satellite droplets may spray off at an angle with
respect to the main stream or follow directly behind the
main droplets. Those following directly behind even-
tually overtake the parent droplet and coalesce with it.
The satellites can usually be eliminated by a slight
adjustment of either the frequency or the voltage

2599



2600 SCHNEIDER ET AL.
OSCILLATOR
Transducer
Metal Mub . Dropiet
AMPLIFIER Glass Capillary etat Teflon Tube Charging E:_?:L:Zd:" Collector
Transducer
0 0,000 E
T L 4‘ . .
[ Frc. 1. Schematic dia-
= [ “Liquid L g_L- gram of the experimental
v v Glass Capillary MICRO-MICRO~ apparatus.
L\ /1

Transducer Mounts

END VIEW

applied to the transducer. They will be neglected in the
discussion which follows. With this restriction, the
radius of the jet at every point will be periodic, with
minima occurring f times every second. At that point
where the minimum radius is zero, a droplet will break
off from the jet f times every second (once in every
cycle). .

Most of the properties of the droplets result from the
conservation of mass and momentum during the
breakup process. The jet enters the closed volume shown
in Fig. 3 with an infinitesimal disturbance which does
not affect the mass or momentum. Inside the box, the
jet breaks up into spherical droplets of radius, 74, which
leave with a velocity, 74, and a center to center spacing,
d. Conservation of mass then states that

watvy = 4wrfva/3d, (1)
where 1y is the jet velocity. The conservation of momen-
tum, neglecting viscosity, gives

nratvy®=dnmr fvd/ 3d@ #raT, (2)
where T is the surface tension of the liquid and 7 is the

density.
Solution of these two equations gives the radius as

ra= (3adv;/4v,) 3= (3a2vs/4f) ', (3)

where [ is the driving frequency. The velocity of the
drop is

va=v7(1—23/v,%), (4)
where 7, is the velocity of capillary waves on the jet,
v2=0T/qa. (3)

TOP VIEW

Interestingly enough, the drop velocity is not directly
related to the propagation velocity for disturbances on
the jet. Thus, although we think of each cycle of the
disturbance growing into a single droplet, the velocity
of this droplet is determined only by the conservation
laws.

The separation between droplets results from the
kinematics of the droplet stream. 1f f drops are formed
every second, and they travel with a velocity, va, the
separation between them is

d=uvg/f, or fd/vy;=(1—0vd/v,?). (6)

The normalized-droplet separation, fd/vs, is plotted in
Fig. 4, along with experimentally measured points. In
this measurement, the droplet spacing and jet radius
were measured with a microscope reticule. The fre-
quency was determined with an electronic counter,
while the mass-flow rate and jet radius supplied the jet
velocity. For each velocity (or mass-flow rate), the
droplet spacing was measured for at least six differenc
frequencies. The values of fd/v; obtained, which showed
a total spread of about 3%, were averaged to obtnia
the experimental points shown in the figure.

The graph shows that the spacing is given very

closely by
d= Z)J/f) (7)

when the square of the jet velocity is much larger than
the square of the capillary velocity. In the remainder
of the experimental work described here, the ratio
(vs/7.)2>9, so the approximation should be valid.

The curve of driving frequency vs. droplet radius
(Fig. 5) shows that the radius of the droplet, measured

Fic. 2. Photograph of a
perturbed jet to show trans-
verse and axial waves.
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F1c. 3. A system sketch to illustrate the conservation of mass and
momentum.

with a microscope reticule, agrees with that predicted
by conservation of mass [Eq. (1) 1

At frequencies outside the range shown in Fig. 5, it
was not possible to produce a uniform beam of droplets.
Rayleigh® has shown that the lower limit of the droplet
radius corresponds closely to a wavelength slightly
greater than the circumference of the jet, which agrees
with results shown in Fig. 5. His theory, however, does
not predict an upper limit on the droplet size since
there is no lower limit on the frequency at which the
jet is unstable. Thus, arbitrarily large droplets appear
possible. To examine this possibility consider Eq. (Al)
In this equation the coefficient, ¢, is proportional to
¢ where the value of w determines the manner in which
the liquid departs from its circular cylindrical shape for
a disturbance of wavelength, \. The larger the value
of w, the smaller the time required for breakup. The
value of o? from Eq. (A3), neglecting electrical effects, is

=T (1—m2a®) mal, (ma) /na*lo(ma),

where Io(ma) and I1(ma) are modified Bessel functions
of zero and first order. A plot of w™pa?/T as a function
of \/2ra, shown in Fig. 6, indicates the wavelengths
which are most influential in producing the instability.
The peak located at \=1.43(2wa) yields the wavelength
which produces the most rapid instability, that is,
A=9q. This figure shows that the rate at which in-
stability grows is very low at the longer wavelengths.
Thus if the driver excites a low frequency, the growth
of this disturbance could be so slow that noise near the
optimum wavelength is amplified to cause breakup
while the driven disturbance is still small. For the
experimental results shown here, the upper limit on
wavelength is about 36a. Thus the wavelength, X\,
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Fic. 5. Driving frequency vs droplet radius for water jet moving
at 5.78 m/sec and 7.40 m/sec.

which causes breakup can be varied between the
approximate limits

Ta< < 36a.

This corresponds to varying the droplet radius from
min to approximately 1.67min for a given-size jet. It
may be possible to extend the range of A and 74 upward
by reducing the noise on the jet.

IV. THE CHARGE ON THE DROPLETS

The net charge on the droplet produced at the end
of the jet determines its motion in an electric field, and
must therefore be known for the application of these
droplets. Consider first the case in which the liquid
conductivity is high enough to allow a steady surface
charge to form before the jet breaks up, but not so
high that the charge can change appreciably during
the breakup. The charge will then be trapped on the
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F16. 6. Jet instability due to charge vs the wavelength divided by
the circumference of the jet.
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Frc. 7. Diagram of a perturbed jet inside of a charging electrode.

surface, and the net charge on each droplet will be the
net charge on the length, /, of the jet which goes into
the formation of one drop, namely

Q=2weV,/In(b/a).

When the relaxation time of the fluid is shorter than
the breakup time, however, the net charge on the drop
will be determined in part by the electric field at the
sutface of the jet when the drop breaks away. Since
the determination of the electric field under these
conditions would be extremely difficult, we will consider
an approximation in which this effect is not important.
Consider the geometry shown in Fig. 7, where the jet
is surrounded by a grounded cylindrical electrode of
radius b. Assume that the jet is charged to a potential,
V., and that the perturbation on the jet is small so that
terms in ¢ can be neglected. Furthermore, it is assumed

SCHNEIDER ET AL.

that the charge located on the jet on any given undula-
tion of wavelength, A, ultimately becomes the charge
on a given droplet, and that the mass of an undulation
becomes the mass of a given droplet. (This implies that
2,252, as discussed in Sec. III).

The potential in the region between the jet and the
cylindrical charging electrode (both of which are con-
centric with the Z axis) is composed of two terms.
One term is

Ve= (V,lnp/b)/Inla/b),

which expresses the potential at a radius p between
two coaxial conductors of inner radius ¢ and outer
radius b. The other term is due to the slight perturbation
on the inner conductor given by r=a-c cosmz. This
potential, Vp, at the point, P, again has no ¢-depend-
ence and varies as cosmsz along the Z axis, thus

Ve=[DIy(mp) + EKy(mp) ] cosmsz,
so that the complete form of the potential is
V=(V,lnp/b)/In’a/b)+[DIy(mp) + EKo(mp) ] cosms.

From the boundary conditions V=0at p=band V=1,
at p=a-+c cosmz one obtains

and

D=V cKo(mb) /a(Ina/b) [Io(ma) Ko(mb) — Io(mb) Ko(ma) ].

Thus, the potential in the region between the jet and charging electrode has the form

V= Ina/b

a

v, {m P [Mmp) Ko(mb) —Io(mb) K0<mp>] COW}
i To(ma) Ko(mb) — Io(mb) Ko(ma) ‘

The charge, Q, on an undulation or droplet can be calculated from

0= andA,

where ¢ is the surface-charge density which is approximately given by

o%—¢€,(dV /3p) | p=a~+c cosma.

If the fact that Ko(mp) = K1(mp)~Ki(ma) and To(mp) = I(mp)~I(ma) is used, one obtains

o=€V,[1— (¢/a) cosmz—mcl cosmz]/a Ina/b,

where

I=[I1(ma) Ko(mb) —Io(mb) K1(ma)}/[To(ma) Ko(mb) — Io(mb) Ko(ma) ].

Hence, the charge, Q, in a single undulation is

2re,V, [oteem
0=- alna/b/,,
or
0=2mwe,V,\/In(b/a) (8)

since A=2n/m. By using Eq. (7) the wavelength, X,
can be expressed in terms of measurable quantities
such as the jet velocity, v, and the driving frequency

(1—(¢c/a) cosmz—mcl cosmz)(a-+c cosmz)ds,

f; thus,

0= 2we,Vus/f(Ind/a).

Thus, when the jet is highly conducting, a slight
perturbation of the surface will not affect the average
charge per unit length of the jet, which then behaves
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exactly like the poorly conducting jet. As the distur-
bance becomes larger, as it will near the breakup point,
this perturbation theory will no longer give a valid
description of the surface charge. In the interest of
simplicity, however, we assume that the charge of a
drop is equal to the charge per wavelength of the
perturbation. This assumption must, of course, be
verified experimentally.

Figure 8 shows the theoretical and experimental
values of droplet charge vs capillary voltage for two
different diameters of charging electrode. The theoreti-
cal curve for both the large and small electrode are
nearly identical. The upper experimental curve (solid
line), which agrees very accurately with the theoretical
curve for potentials greater than 20 V, was obtained
with a small-charging electrode. The length and
diameter of this charging electrode were 1.27 cm and
0.29 cm, respectively. The lower experimental curve
was obtained with a charging electrode of the same
length, but with -a slightly larger diameter (0.37 cm).
Since the diameter of the jet was 55.2 u, the ratio,
b/a, for the upper and lower curve was approximately
53 and 67, respectively. The discrepancy between
calculated and measured values of droplet charge for
large electrodes and small potentials is probably due to
the influence of fields from various extraneous sources.
From these results, it appears that the ratio, b/a,
should be kept as small as is practically possible so that
the effects of these fields will be minimized. The ratio
of the length to radius of the charging electrode is
important for the same reason. If it were possible to
keep the ratio of length to radius constant, the diameter
of the charging electrode might not be as important.
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However, the length of the jet places a practical limita-
tion on the length of the charging electrode and there-
fore the ratio, b/a, is critical.

The charge on the droplet stream was measured by
utilizing a micromicroammeter. With this method, the
stream of charged droplets was directed into a nearly
closed container and the current from the container to
ground was measured.

If Eq. (3) is used to eliminate A from Eq. (8), the
specific charge (charge to mass ratio) of the droplets is

O/M=2¢,V,/d In(b/a).

This equation, which indicates that the specific charge
is directly dependent on the potential, is true only for a
limited range of potentials because no account has been
taken of space-charge conditions. An interesting feature
of this result is that the specific charge is independent
of the wavelength of the disturbance of the jet because
the charge and mass of a wavelength became the charge
and mass of the droplet.

V. SUMMARY

The radius, velocity, and spacing of droplets ejected
from the end of an unstable jet can be calculated in
terms of the jet velocity, radius, and surface tension.
When the inertia forces are much larger than the
surface-tension forces, the droplet velocity is very
nearly equal to the jet velocity, and the radius is
given by

ra= (3a%v;/4f)15.

The charge on the droplet is given approximately by
the total charge over one wavelength of that jet per-
turbation which eventually grows to form one drop,
namely

Q="2me,V,v5/f(Inb/a).

The charge to mass ratio is therefore independent of
the jet velocity and applied frequency.

APPENDIX I: EXTENSION OF RAYLEIGH'S
THEORY FOR CHARGED JETS

Rayleigh, in his analysis of the instability of a liquid
jet, did not examine the effect of electric charge on the
jet. Basset! investigated the instability of a liquid jet
in a more general manner by including the velocity,
viscosity, surface tension, influence of the surrounding
air, and the electric charge on the jet. We shall extend
Rayleigh’s work by including the effect of electric
charge and show that it is in complete agreement with
Basset’s more detailed study.

In Rayleigh’s analysis it is assumed that the jet has
the shape illustrated in Fig. Al where the radius 7
of the jet at time ¢ can be approximated for small
perturbations by the equation,

r=a,+c cosmz, (A1)

where a, is not a constant but is constrained by the
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Fic. Al. Diagram of a perturbed jet.

fact that the volume per unit length, V., along the jet
is a constant, ¢ is a small quantity variable with time,
m is the wavenumber 2m/X\, where \ is the wavelength
of the disturbance, and the cylindrical jet is axially
symmetric with respect to the Z coordinate.

When charge is present on the jet, Rayleigh’s theory
must be modified to take into account the potential
energy of the charge. For a perturbed jet axially sym-
metric with respect to the Z axis as shown in Fig. Al,
the potential, ¥V, of a point, P, at a distance, p, normal
to the axis, is the sum of two potentials: one due to a
charged circular cylinder of liquid and the other due to
a charged perturbed jet. The potential, V¢, of the
circular cylinder of radius, g, is

Vo=V, Inp/Ina,

where V, is the potential at p=a. The potential, Vp, of
the perturbed jet depends only on p and z so that the
solution to Laplace’s equation has the form

Vp=Z(z) R(p).

Since the potential of the perturbed jet varies as cosmz
along the Z axis, we have

Z(3) = A cosmaz.

In this case, the radial term must be expressed in terms
of the modified Bessel function I,(mp) and K.(mp),
that is,

R(p) = BI.(mp) +CK.(mp).

Since the potential, Vp, is axially symmetric, =0, so
that the expression for Vp becomes

Vp=[B'I,(mp) +C'Ko(mp)] cosmz.

The function, Iy(mp), is finite at mp=0 and infinite at
mp= o, This makes it unsuitable for the region outside
the jet and must be excluded, i.e., B’=0. The function,
Ko(mp), is infinite at mp=0 and zero at mp= =,
making it suitable for the region outside the jet. Thus,
the potential, V', becomes

V="V, Inp/Ina+C’'Ko(mp).

To describe the potential of a conducting jet correct to
first order in ¢ we let @,=a in Eq. (Al). Thus, at p=7,
V=V, we find

C'=—¢V,/(alna) Ky(ma),

so that
V="V,/Ina{lnp— [cKo(mp) /aKo(ma)] cosms}.

This expression for the potential is correct to first order
in ¢ and can be used to calculate, approximately, the
second-order perturbation in the potential energy per
unit length Pr. This energy is one-half the charge per
unit length, Qy, multiplied by the potential of the jet,
V., that is,
Pr=Q.V./2.
The charge per unit length on the jet is given by
2r
QL: %/(; ardz,

where o is the surface-charge density which can be

calculated from
o=—¢0V/dp.

When o is evaluated at r=a-c cosmz, the surface-
charge density becomes approximately

where the factor Ko= K; was used. The charge per unit
length is

2 A
QL= %/ﬂ ordz

2wV, [ e c2mK1(ma)]

Ina 20 2aKy(ma)

and the potential energy per unit length is

e, Vo [ ¢ ImK 1(ma)]

P = -— — — — ——
L 2¢¢  2aKo(ma)

Ina

The potential energy, Pg, relative to the circular
cylinder is
P R— P L— P Y

where P, is the potential energy per unit length of the
unperturbed cylinder of liquid. This energy is

Po=QcLV,/2=—meV/Ina

where Q.= — 2me,V,/Ina is the charge per unit length
on the unperturbed cylinder. Thus,

T Vo maKyi(ma) |
Pr= 1 —
2 Ina Ky(ma)

The total potential energy, P, relative to the undis-
turbed cylinder is the sum of the potential energy per
unit length due to surface tension and the potential
energy per unit length due to charge. The potential
energy per unit length, Pr, due to surface tension was
calculated by Rayleigh® and is

Pr=—Trt(1—m?a?) /2a.

Lagrange’s method can be used to obtain the time

aZ
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variation in the quantity, ¢. Since the Lagrangian is the kinetic energy K minus the potential energy P, the

differential equation for a charged jet is

e Voimal(ma)

T [(l—mzaz)mall(ma)]
na’ Iy(ma)

where the expression for the kinetic energy

na*(Ina) Iy(ma)

0, (A2)

[ maK1(ma)
Ko(ma)

It

_ maly(ma) ,

" 2maly(ma)

from Rayleigh’s work was used.

If the displacement of the surface is exponential in time, with the growth rate, w, the differential equation, Eq.

(A2), reduces to the dispersion relation.

maK1(ma)

, T [(1—m2a2)mall(ma)]
¢ Ig(ma)

which is valid in the coordinate system attached to the
jet. This agrees with the results obtained by Basset!
and Melcher.?

In Eq. (A2) the influence of surface tension on jet
stability is illustrated in the second term (first coeffi-
cient of ¢). The third term in this equation arose from
the charge on the jet. To examine the effect of charge
on the dynamical stability of a liquid jet, a normalized
graph of this function vs A/2ra is shown in Fig. A2.
For wavelengths slightly less than the circumference
of the jet, charge promotes instability since f(ma) is
negative. For values of N> 1.66 times the circumference,
f(ma) is positive, indicating that charge promoted
stability.

na*

08

f(ma)

-04 -

Fic. A2. Jet stability due to charge vs the wavelength divided by
the circumference of the jet.
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Since a practical jet is frequently in the region where
charge promotes stability, it is of interest to compare
the two coefficients of ¢ in Eq. (A2). A plot of the first
coefficient of ¢, fr and the second coefficient of ¢, fc¢ is
shown in Fig. A3. The charge term is only important
for wavelengths slightly greater than the circumference
of the jet. Since the usual mode of operation for pro-
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F1c. A3. The coefficients of ¢ due to surface tension and charge vs

the wavelength divided by the circumference of the jet.

ducing uniform-sized droplets is between 7a<A<36a,
the” importance of charge on the jet instability is
negligible compared to the effect of surface tension.
The values of V, and jet radius used in this figure were
100 V and 25 4. This potential corresponds very closely
to the maximum charge per unit length that can be
retained in air by a cylindrical column of liquid 25 y in
radius. Thus, the graph of f¢ in Fig. A3 is for a highly
charged jet.




