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Abstract—A software tool which presents ana-
lytical solutions of Laplace’s equation offers sev-
eral advantages over numerical techniques, such
as the opportunity to study parametric dependence
of the solutions, and the ability to deal easily with
derivatives and highly curved surfaces. The prin-
cipal obstacles to the use of analytical solutions
have been the difficulty of matching the shape to a
solution, and the need to perform a large number
of tedious symbolic calculations using algebra and
calculus. These difficulties are overcome by a
computer program which guides the user through
a series of graphical menus to the correct problem
statement. The solution is then furnished in a text
editing window, and can be copied and exported to
other programs, such as word processors and
spreadsheets.

INTRODUCTION

Laplace’s equation forms the foundation of many fields
of applied physics and engineering, and knowledge of its
solutions is required of every undergraduate in these areas.
It governs the steady state behavior of physical quantities
such as temperature, voltage, magnetic fields, fluid flow,
and pressure, and forms the starting point for the study of
the dynamic behavior of the same quantities. It is also the
introduction to potential theory, a field of applied mathe-
matics with a long history and a reputation for long and
difficult calculations. This combination of great impor-
tance and difficult mathematics makes Laplace’s equation
an ideal candidate for computer assisted engineering.

In many ways, the ideal approach to the solution of
Laplace’s equation is the analytical approach, which ex-
presses the potential and its related quantities such as heat
flux or electric field as a mathematical equation. The ad-
vantages of this approach are:

* Parametric dependence is clear. For example, the
electric field around a point charge, q, has the form

E~4

2

Manuscript received June 1, 1991. This work supported in part by the
U. S. National Science Foundation under Grant No. ISI-9060714.

0-7803-0453-5/9181.00© 1991IEEE

which immediately displays the inverse relation for dis-
tance. Functional dependence is easily seen in the more
complicated solutions also, giving the student insight into
the behavior of the field.

¢ Derivative variables are easily obtained. Since the
solution is an analytical function, it can be operated on with
standard mathematical techniques to provide additional in-
formation. For example, the electric field can be obtained
by differentiating the potential at any point in space, and
the total electric charge on an object can be determined by
integrating the electric field over a surface which encloses
the object.

* Many problems have already been solved. Laplace’s
equation has been intensively studied for well over a cen-
tury, because of its overwhelming importance to the physi-
cal sciences. There are literally thousands of analytical
solutions for electrostatic problems which are available in
the literature [1, 2, 3, 4], each for a different combination
of shapes and boundary conditions.

* Curved surfaces can be handled exactly. The solution
is carried out in terms of coordinate systems with curvilin-
ear surfaces, so the solution is formulated exactly, not as
rectangular or triangular approximations, like those of the
finite element or finite difference techniques.

With all these advantages, however, practicing engi-
neers rarely choose analytical solutions when they need to
find electric fields. Instead, they choose numerical tech-
niques such as finite differences or finite elements. Numer-
ical methods require that all dimensions in the problem be
locked into place before beginning the solution, so they can
not be used to examine functional dependence without te-
dious (and carefully selected) repetition of the solution
process. If derivative quantities such as heat flux and elec-
tric field are required, they must be obtained by numerical
differentiation, which always introduces large errors into
the solution, and therefore requires much finer detail in the
solution for the potential. With all these problems, why are
the numerical methods so popular?

The answer lies with the nature of the analytical solu-
tions. They have a single drawback which is overwhelming
to an engineer or scientist with an undergraduate educa-
tion, and can be daunting even after years of graduate
study. Analytical solutions of Laplace’s equation require an
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immense amount of complicated mathematics. Even the
simplest of them, which are usually taught at the Junior
level, require facility with vector calculus. More useful
solutions involve partial differential equations and differ-
ential geometry, which represents the highest level of
mathematics reached by most engineers. The solution of a
typical problem for a single sphere is likely to involve
solving two or three ordinary differential equations with
an infinite series of transcendental functions, patching
them together with boundary conditions, solving a set of
algebraic and transcendental equations for unknown coef-
ficients, and integrating the solution over several dimen-
sions. If these steps are completed without a mathematical
error, the answer would be expressed as an infinite (and
slowly converging) series of Legendre functions, each of
which must be evaluated with an argument which is a
trigonometric function. To get a numerical result, a pro-
gram must be written to evaluate a large number (not
known in advance) of the terms. With all of this additional
work, ranging from computer programming to partial dif-
ferential equations, it is not surprising that scientists and
engineers who value their time turn to numerical packages
using techniques such as finite elements, even though they
lose much of the physical insight which comes with the ana-
lytical solution.

A more fundamental problem with the analytical ap-
proach lies in the way in which Laplace’s equation is
solved. Generally the problem arises in a context with a
specific geometry and material properties, but the solu-
tions are categorized by techniques. Thus one problem in-
volving a sphere might be solved using separation of vari-
ables, while another would only respond to image charge
techniques. An infrequent solver of Laplace’s equation will
not be expected to know the appropriate technique for each
possible problem.

The present paper describes the development of an in-
teractive computer program which will enable students
(and also working scientists and engineers) to obtain ana-
lytical solutions to Laplace’s equation for numerous shapes
without the need to perform the complicated mathematics
involved in the solution or to memorize a large number of
solution techniques. The user interface will allow specifi-
cation of the problem by means of graphical menus, and
will provide the solution as an analytical expression in a
text document.

THE SOLUTION TECHNIQUE

Designing a computer aided solution of Laplace’s equa-
tion should begin by carefully tracing through the steps
actually taken by a experienced engineer, and then replac-
ing these steps as much as possible with the computer. As is
often the case when a computer is being introduced to a
problem, there are a number of steps which are taken for

granted by an experienced practitioner, but which must be
carefully described before the computer can proceed. As
an example, consider the following problem, which is
usually seen in the first course in electromagnetism.

A point charge, g, is placed a distance, d,

above a conducting plane. Find the E field on

the surface of the plane, and the force acting

on the charge.

Unlike the approach taken in many textbooks, we as-
sume here that the engineer really needs to know the value
of the electric field and the force, and will not be satisfied
with a mathematical expression. For example, the problem
might involve the attachment of a toner particle to the pa-
per in a laser printer, and a minimum force must be gen-
erated to preserve the integrity of the image. Predicting the
operation of the laser printer will require that the numeri-
cal value of the electrostatic force be known for a given
toner charge and location. In addition, reports on the work
must be prepared, so the results must eventually be trans-
lated into charts and other documents.

The first step in solving this problem is usually drawing
a sketch of the situation, like that shown in Fig. 1.
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Figure 1. Sketch of geometry

An experienced solver of Laplace’s equation recognizes
this problem as one which can be solved using the method
of images. To put it differently, the engineer has memo-
rized a solution technique for this problem. The technique
consists of placing a fictitious charge of equal and opposite
magnitude below the surface of the conducting plane. The
electric field at any point in the upper half space is then
given by superposition of the fields from both charges as

E-_d

fl + 92 r
4meor
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This is a formal solution to the problem, but it is not di-
rectly useful to someone who needs to know the electric
field, since it contains two distances which must first be
calculated (r1 and r2), and two vectors which must be
added. At this point, the engineer would find it necessary to
write a program or spreadsheet to evaluate all the needed
terms. Once the solution is obtained, the results have to
copied into the report, along with the explanations and
conclusions.

Thus the experienced solver of Laplace’s equation ac-
tually recalls a memorized solution and customizes it to the
problem at hand. The customization involves specifying
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the parameters, performing subsidiary calculations, plot-
ting results, and preparing a report.

The goal of the software described here is to supply the
‘memorized” solution, perform the subsidiary calculations,
and enter the results into a word processing document. The
availability of solutions allows a beginning student the
Same access to solutions as an expert. In addition, the built-
in subsidiary calculations and formatted output spare the
expert from much of the tedious and €ITor-prone aspects
of solving a complete problem.

In order to reach this goal, the solution procedure is
divided into two parts, depending on the need for direct
interaction with the user. All of the steps which do not re-
quire input from the user are done in advance, and col-
lected into a catalog of problems which serves as a resource
file. This catalog, which is prepared by an expert in field
theory, contains both the problems and their solutions, in-
cluding expressions for the potential and related quantities
such as flux, and a description of the geometry and bound-
ary conditions. This database functions as a catalog of pre-
solved general solutions in which all of the difficult calcu-
lus and much of the algebra has already been done.

The second part of the solution procedure is carried out
by means of a software tool for the student or engineer.
This program, which incorporates the catalog described
above, guides the user to the correct solution with a series
of menus which present a choice of geometries and bound-
ary conditions. The final selection leads to a graphical rep-
resentation of the problem and a list of parameters which
can be changed as desired to fit the desired problem. Once
the parameters are selected, the program presents the solu-
tion as an analytical equation in a text document. The doc-
ument can be edited, and the equation can be exported to
other programs for further work.

The program adapts these general solutions to the par-
ticular case at hand, performs additional algebraic simpli-
fications, and formats the equations for the desired output.
It can reduce the equations to numerical values, if desired,
and can also export them in a form useful for spreadsheets
and word processors.

ADVANCE PREPARATION OF THE PROBLEM CATALOG

The heart of the project is the catalog of problems and
solutions, which contains all the information needed to
completely represent the behavior of a solution for a par-
ticular class of shapes and boundary conditions. This cata-
log must be prepared in advance by someone knowledge-
able in electrostatics, and put into a form which can be ac-
cessed by the student or working engineer. In order to
completely describe the problem, the catalog entry for
each problem has been formulated as a data structure con-
taining:

* Co-ordinate system description
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* Number of distinct regions (topology)

* Material properties of each region

* Number of boundaries (including infinity, if appro-
priate)

* Shape of each boundary

* Locations of the boundaries

* Nature of constraint on each boundary (potential,
gradient, combination)

* General form of the potential solution in each region.
All of this information is entered by an expert. Additional
information can be calculated by symbolic mathematical
programs. At the present time the only derived informa-
tion is

* Electric fields in each region

Defining the problem

The general form of the information required is de-
termined by the solution process for Laplace’s equation. In
order to make the requirements clearer, we will use a spe-
cific problem as an example of the information needed to
completely specify and solve a problem. The problem in-
volves two concentric spheres which are held at different
potentials, as shown in Fig. 2.

\——7

N

Figure 2. Two concentric spheres

One of the essential parts of the problem definition is
the relation between the Cartesian coordinates and the nat-
ural coordinates of the problem, which has the form

X = x(u, v, w)
y = y(u,v,w)
z = z(u, v, W)

In problems with spherical symmetry, for example, we
usually use the spherical coordinate system, which is re-
lated to the Cartesian system by the parametric equations:

x =rcosBcosd

y = rcosOsing

z = rsin B
These definitions are needed in the next step to find the
gradient and other vector calculus results, and are also

essential for a description of the boundaries and regions of
the problem.




The second essential component of the problem defini-
tion is the specification of the boundary conditions which
usually consists of several parts, such as the nature of the
condition, its value at the boundary, and the location and
shape of the boundary. In the example, the potential is
specified to have the value V; volts at the inner sphere.
This boundary is a sphere located at the origin, which is
specified in the spherical coordinate system as

r=a

More complicated boundary conditions, involving several
dimensions and combinations of potential and flux, can
arise in advanced problems.

The third essential component of the solution for the
potential is the form of the potential itself. In general, the
solution has the form

®=F B + F2B; +...

where the Bj is the ith boundary value (potential, charge
density, etc.) and Fj is a coefficient which depends on the
geometry and material properties. In our example, the
general solution has the form

b_1 b_b
o= _ Vi + ar V2
b_1 b_1
a a
so that the coefficients are given by
b_jy b_b
F, =1 F,=a I
b_1 b_1
a a

These coefficients are all that is needed to reconstruct the
solution for given boundary values, so these are the ex-
pressions that are stored in the data structure.

Note that the symbols ‘a’ and ‘b’ represent the same pa-
rameters as in the definition of the boundary shape and lo-
cation. The program includes appropriate means to make
this connection.

These components of the data structure which makes up
the problem statement are defined in a special program
which allows for interactive entry and editing of the prob-
lem definition. This program, which is written in ANSI C
for portability, is used by an expert in electrostatics to
make up the catalog of problems. Once the problem defi-
nition is entered, it can be printed out, or exported to a sec-
ond program which performs all of the calculus-based
steps needed to complete the general solution.

Performing the calculus-based solution steps

The solution steps which require advanced mathemati-
cal manipulations are carried out in a second program
written in Mathematica, a symbolic mathematics platform.
This program, in three successive steps, defines the metric
coefficients of the coordinate system, calculates the sym-

bolic gradient, and then checks the result for consistency
with Laplace’s equation.

The first step is the calculation of the metric coefficients
for the coordinate system, defined by

2 2 2
g\lu(“! v, W) = (9‘5) + (é-y—) + (z)
du dou du

2 2 2
gw(u, v, w) = x + 6_y + %
av v av
2 2 2
Zow(l, Vv, W) = 9x + i}: + (a_z)
ow ow ow
For our spherical example, these become
gn=1
goo = T2
8pp = T2sin?d

Once these have been calculated, the electric field can be
obtained by evaluating

: ° ad
E=-Vo=-_1 @iu - %?Elv -1 .77,
V8uu gu V8w ov V8w gw
which in our example becomes
- ° P
E=—@i,—l@~le— 1 — iy
or ' 38 rsin@ o¢

One advantage of a symbolic mathematics language like
Mathematica is the ability to perform automatic checks of
the solution. This capability is used here to evaluate the di-
vergence and curl of the electric field, to ensure that it sat-
isfies the conditions

V-E=0

VxE=0

which are required of any solution of Laplace’s equation.
If either of these expressions should be non-zero, there is a
problem with the proposed solution of the problem. Usu-
ally, this indicates a mistake in the form of the solution in
the problem statement.

If all the requirements for a solution are met, the Math-
ematica program writes out a symbolic solution file for the
gradient associated with each coefficient of the potential
solution.

Preparing the problem/solution package

The symbolic output file is then exported to a third pro-
gram which merges the solution with the original problem
statement file, and translates the merged data structure into
a form suitable for accessing by the user program. At this
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point the data structure for the catalog entry of the prob-
lem is complete.

INTERACTION WITH THE USER

The problem catalog contains the results of all the diffi-
cult and time-consuming steps of the solution of Laplace’s
equation, but it must be made easily accessible before it can
serve as a useful tool for a student or engineer. This access
is provided by a user-oriented program called Poten-
tials...™ which allows a user to select the problem based on
its geometry, enter specific values of parameters, and then
receive a text document containing the problem statement
and solution as a symbolic analytical expression. The pro-
gram is segmented internally into a kernel which provides
all the mathematical and database capabilities, and a front
end which handles the user interface. The kernel is written
in ANSI C, and can be implemented on virtually any com-
puter. At present, the front end has only a Macintosh ver-
sion. The operation of this program is described below.

Selecting the problem

When Potentials... starts up, it first loads information
on the physics of electrostatics, such as the permittivity of
free space, the symbols which represent the potential and
fields, and so forth. It then opens the problem selection
window and waits for user input.

The first step is to select the primary element from the
popup ‘Geometry’ menu (Fig. 3).

E==—==—== aplace|

Geometry:
Point charge

Line charge
Sheet charge '
ylindrica
Flat electrode
Dipole

Figure 3. Selecting a geometry from the popup menu.

This menu contains virtually all the geometries seen in an
introductory course in field theory , such as lines, circular
cylinders, and dipoles. For the example of two concentric
spheres, the appropriate choice (‘Spherical’) is shown
highlighted in the figure.

Once the user selects a geometry class, the program
displays a selection bar of icons representing the various
problems in its database, as shown in Figure 4.

(=== | oplace Pane-0 B="5|

Geometry:
l Spherical l

Figure 4. Selecting a problem from the scrolling icons.

In this example, concentric spheres are represented by the
second icon, which is highlighted in the figure. Once it is
selected, the program will load the problem statement and
solution into memory, select default values for all of the
parameters, and display a picture of the geometry along
with a list of all the parameters which can be changed by
the user. The complete problem window at this point is
shown in Fig. S.
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Laplace Pane-0 ————=—=—=0T|

Geometry: Q

Spherical

Fig. 5. The problem definition window

At this point the user can enter new values for any of the
parameters, to bring the general solution into accord with
the problem at hand. For example, an electrode can be
grounded by setting its potential to zero, or a circular
electrode can be enlarged by changing its diameter.

Once the parameters have the required values, the
user’s job is finished. The rest of the solution will be car-
ried out by the program as soon as the ‘Solve’ button is
pressed.

Performing the algebraic simplifications

When the ‘Solve’ button is pressed, the program first
determines the current values for all of the parameters of
the problem. It uses these values, along with the symbolic
coefficients of the solutions for potential and electric field
to form general expressions for the complete solution.

The program next attempts algebraic simplification of
the symbolic expression. For example, any term with a
factor of zero is removed, which eliminates coefficients as-
sociated with grounded electrodes. Other simplifications,
such as a+0 —> a, are also performed. Finally, all expres-
sions involving numbers (as opposed to literal symbols) are
simplified by carrying out the indicated arithmetic opera-
tion. The result of this process is a set of simplified analyti-
cal expressions for the potential and electric fields. For the
concentric sphere problem, these take the form

Vo= (((((=1 + (B)/(x)))N) /(-1 +
(b)/(a))))))*V1l + ((((((b)/(a) -
(b)/(x)))))/((((=1 + (b)/(a))))))*V2

Er = ((b)/(((((-1 + (b)/(a))*r"2)))))*Vl
+ (=((B)/(((((-1 + (b)/(a))*r"2))))))*V2

Preparing the output

The unformatted symbolic expressions, even in their
simplified form, are usually hard to interpret, so the pro-
gram includes the ability to output the equations in a form
similar to the standard representation of equations. If this
output form is selected, the problem statement and its solu-
tion appear in a document window like the one shown in
Fig. 6.
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PROBLEM: concentricSphere
Dielectric constant
K1 = K1

Condition ®1:
VUt = U1
when
a=a

Condition 82:
V2 = v2
when
b=b

Evaluate at:
r=r

th = th
ph = ph

SOLUTION

Region ®1:
Us=

b b b
-1 + ——

e I )

/ \
| b
|-1 + ——
| a
\

|
|
|
/

N
o —_————

Fig. 6. The solution window

This window has standard text editing capabilities, so that
notes, comments, or longer descriptions of the problem
can be added by the user. The text can be saved in a file,
and individual portions can be copied and pasted using the
standard Macintosh techniques. For example, the format-
ted equation can be copied from the output window and
pasted into a standard word processor. .

The unformatted form of the output can also be ob-
tained in a text editing window, and can be copied and
pasted into other programs such as spreadsheets. As an ex-
ample, the contour plot of potential around two unequal
charges (Fig. 7) was prepared by copying the output of
Potentials... into Mathematica™, and then calling for a
contour plot.

0.0044

0.002

i

~0.0024

=-0.0044

-0.01-0.005 0 0.0050.01 0.015 0.02

Fig. 7. Contour plot using output exported to Mathematica

CONCLUSION

The program described above is a first step toward the
goal of providing computer-aided analytical solutions of
Laplace’s equation to students and working engineers. This
goal is pursued by carrying out the difficult and time-con-
suming steps in advance under the supervision of an expert,
and then transforming these results into a comprehensive
catalog of solutions which can be accessed by a user with
the standard undergraduate education in engineering. The
access is structured to follow the practical needs of the
engineer, so it follows a path based on the geometry of the
situation rather than the method of solution. It is hoped that
this approach will allow students and engineers to spend
more time gaining physical insights into electrostatics,
rather than spending time on mathematical details.
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