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Abstract - Electric fields offer a convenient way to
manipulate liquid surfaces. The electrical forces pro-
duced are perpendicular to the surface of a conducting
liquid, but unlike pressure, act only on the surface
itself. The opposing force is surface tension. Self-
consistent solutions for the shapes of axisymmetric
menisci in electric fields are derived for conductive
liquids with constant surface tension. In a uniform
field, the shapes which reiylt are rounded cones. The
dimensionless quantity EOE b/¢, where b is the radius

of the hole surrounding the meniscus and ¢ is the sur-
face tension, is a key parameter in the models.

INTRODUCTION

Many modern applications of electrostatics involve
the manipulation of 1liquid droplets or surfaces. 1In
applications such as liquid toner electrophotography
and ink jet printing, the ability to control precisely
a liquid surface would be valuable, The issue of how
a static liquid surface interacts with an electric
field is germane to these applications. The static
case can provide insight into the effects of surface
tension and geometrical parameters. It can reveal the
conditions under which electrostatic forces dominate.
In particular, it 1s well known that at some critical
field strength, a liquid surface becomes unstable and
emits droplets or jets of charged fluid. Solutions
for the static case should be useful in predicting this
stability limit.

An early attempt to take advantage of such elec-
trohydrostatic field effects was explained in the semi-
nal electrostatic ink jet patent by Winston [1]. There,
an electric field was to draw liquid from an orifice
and direct it toward a paper target. Soon afterward,
Taylor [2] presented an analysis of the electrohydrosta-
tic stability 1limit of a particular liquid surface
shape. He demonstrated that a cone was a possible
meniscus shape under specific electric field geometries,
but that only one particular conical shape met all
boundary conditions. This "Taylor cone™ of apex angle
98.3° has been approached in various experiments [2],
[3]1. Davey and Melcher [4] examined the behavior of
flat surfaces under the influence of electric and mag-
netic fields. Joffre and his coworkers [3], [5], stud-
ied the effect of electric fields on meniscus shape.

In the work of Joffre, both theoretical and exper-
imental results for meniscus shapes in electric fields
are presented., The electrostatic and hydrostatic equa-
tions are solved simultaneously to predict meniscus
shape, The maximum meniscus extension is presented as
a function of voltage, surface tension, hydrostatic
pressure, orifice diameter, and electrode spacing for
a tube-plane geometry. While the shape of a meniscus
is treated in {3], the issue of surface instability
and its relation to fluid properties 1is covered only
briefly, and the breakdown limit of the air surrounding
the meniscus 1is not taken into account. The basic
question of whether an electric field is strong enough
for active control of a liquid surface is not addressed.

The objective of the present study is to extend
the work of Joffre in order to gain insight into prac-

1This work was supported by a grant from Tektronix,
Inc., Beaverton, Oregon.

tical aspects of meniscus electrohydrostatics. of
special interest is the way in which fluid parameters
influence the fields.

ELECTROHYDROSTATIC FIELD THEORY

When an electrically conductive liquid is exposed
to an electric field, the field will be normal to the
liquid surface and will exert an attractive force on
that surface. Maxwell's stress tensor [6] can be used
to express the force per unit area as a pressure Pe =

£E2/2, where € is the permittivity of the fluid in the
electric field gap, and E is the electric field at the
liquid surface. Under static conditions, this electric
pressure must balance any hydrostatic pressure in the
liquid, the 1liquid surface tension forces, and any
other forces. The problem is to find the meniscus
shape corresponding to such a force balance and iden-—
tify the associated fields.

Approach to the Problem

Surface tension forces can be expressed in terms
of curvature. A differential equation is derived for
the curvature of a meniscus, under the influence of
some given electric pressure and hydrostatic pressure.
The electrostatic equation has the equipotential corre-
sponding to the position of the meniscus as one boundary
condition. These two equations must be solved simul-
taneously to yield a self-consistent result for the
meniscus shape.

Assumptions are as follows:

- The only forces acting on the meniscus are surface
tension, hydrostatic pressure, and electric pres-
sure.

- The meniscus is completely stationary, and there
is no internal liquid motion.

- Surface tension is assumed to be a known constant,
as is any applied hydrostatic pressure.

- A single value of hydrostatic pressure is assumed
at all meniscus points.

- Singularities in the electric field are not per-
mitted. This is expressed in the method by
requiring that the meniscus have a non-singular
curvature in all directions.

Surface Force Balance

Figure 1 shows the geometry of an element of a
meniscus surface, The y axis corresponds to the vert-
ical direction. In the Figure, fnet is the net force

from electric fields and hydrostatic pressure. Surface
tension creates forces in each of the four directions
along the surface. In the static case, each component
of the forces must balance. The vertical balance leads
to

f + f + f =0 . 1)

+
nety fa1y * foZy a3y ally
The form of terms fo in (1) is well known: surface
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Figure 1. A Differential Element of a Meniscus

tension multiplied by the three-dimensional curvature
(1/R1 + 1/32) and the element area gives this opposing

force. Thus a pressure balance corresponding to the
force can also be written as
P = o(zl + D) (2)

net R1 R2

where R1 is the radius of curvature along one tangent

direction and R2 is the radius of curvature along the

direction normal to that of R,. Equation (2) suggests
a normalized pressure term }nebR/o, where ¢/R is a

"surface tension pressure." This dimensionless ratio
would represent the relative strength of electric for-
ces in comparison with surface tension if P were

net
equal to Pe.

Any externally applied hydrostatic pressure will
manifest itself directly at the meniscus. Therefore,
the net pressure Pnet is given as

P = Pe(x,y,z) + P

net stat (3)

where Pe(x,y,z) is the electric pressure at any point,
and Pstat is some imposed hydrostatic pressure. Let
Pe be normalized as Pema ax is the

highest electric field in the system (generally at the
tip of the meniscus). The function F(x,y,z) is a "dis-
tribution function" such that 0 < F < 1: F represents
the geometric dependence of Pe. Equations (2) and (3)

" F(x,y,z), where Pem

represent very general relationships which must be
satisfied in any static case.

If the meniscus is immersed in a homogeneous die-
lectric of permittivity e, the electrostatic potential
¢ is given by

v = 0 (1)
so that at any point on the meniscus,
P(x,y,2) = e(¥)°/2 (5)

Equations (2) and (5) must be solved simultaneously to
yield meniscus shape. The solution is performed iter-
atively, as described below.

Let us examine two simple geometries to check the
basic validity of the force balance equations. 1In the
case of a meniscus confined to a circular orifice of
radius b, it is well known that a particular value of
uniform static pressure Pstac will produce a meniscus

which is a section of a sphere with radius r 2 b. The
pressure balance becomes
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1 1
= - g(—+ (6)
Pstat o(r ;9
which gives Pr/o = 2. This is indeed the correct ex-
pression for tension in the skin of a thin-walled
spherical vessel, as can be found in any standard
mechanics text [7]. A second case is that of a cone,

as in Figure 2. Curvature 1/H1 is zero, while radius

Figure 2. Geometry of a Conical Meniscus

R2 is a constant times x, The pressure balance becomes
1
pe + Pstat = - G(ET() n
In the case of Pstat = 0, this implies that a cone is

possible when Pe « 1/x, which coincides with Taylor's

results [2]. It is interesting to notice that at the
tip of the cone, both curvature and electric field will
be infinite. In principle, the two can balance out,
although such a situation would not be realistic.

A General Sample Case

Consider a fairly general problem: a meniscus, in
air, confined to a circular hole of radius b in one
plate of a large parallel plate capacitor, as shown in
Figure 3.

+V

permittivity Y
€0 surface
tension X

Figure 3. Axisymmetric Meniscus in Uniform Field

The problem has axial symmetry, and also has a rela-
tively simple field geometry. The meniscus can be de-
fined by a curve in the x-y plane, with equation y =
f(x). In spherical coordinates, the curve has an
equation r = g(8). Surface curvature can be written
in spherical coordinates as [8]

1 R
2 2 2
1. 2 e °-1,dr 1 [1 - _dr/de dr
(Lo 280 - Lty LD - _dr/dd qpy (S0
) r r3 de r2 d62 r r tan @ de
[+ = (85232
r (8)



minimum orifice radius which will permit electrostatic
fields to cause a flow. For example, in the pure
electrostatic case with P = 0, the minimum orifice
radius is %4.050/39.8, wﬁfgﬁ is tabulated for three
liquids in Table I. The minimum radii are more like

TABLE I
MINIMUM ORIFICE RADII FOR ELECTROSTATIC LIQUID
EJECTION IN AIR, P =0
stat
Liquid Surface tension, N/m minimum
radius
water g.072 7.32 mm
methanol 0.022 2.24 mm
ethylene glycol 0.048 4,88 mm

pipe sizes than like ink jet orifice radii. For water,
the diameter is more than 1/2"!

Clearly, there is a practical problem with exclus-
ively electrostatic meniscus control. Consider instead
the case where a hydrostatic pressure is also applied
to the 1iquid. Then the electric field is an "ejection
aid" rather than the sole controlling force. For ex-—
ample, if pstatb/o is set to 1.97 (near the hydrostatic

stability limit), a ratio Pemaxb/u of only 0.058 will

create instability. Table II shows the maximum P

emax
b/g for which convergence could be achieved, at four

different values of Pstatb/o' Also given are the cor-

responding initial (zero-field) meniscus heights and
the heights at the convergence limit, normalized to
radius b. Meniscus shapes for the three nonzero Pst

cases are shown in Figure 5. at

TABLE II
MINIMUM P b/¢ FOR ELECTROSTATIC LIQUID EJECTION
em.
IN AIR, P * 0
stat
Pstatb/u Pemaxb/q at Initial Height at
stability limit  height stability limit
0.0 4,05 0.0 0.54
1.15 1.72 0.315 0.75
1.73 0.51 0.577 0.88
1.97 0.058 0.839 0.97

In Figure 6, the limiting Pemaxb/q values are

plotted versus Pstatb/u. The dashed line is a linear

interpolation between the data points. The shaded
region, for which the menicus shows static stability,
can be summarized simply as

Pstatb + Pemaxb

5 50 <2.

Minimum orifice sizes can be derived from the limiting
value of Pemaxb/o as before, Table III lists minimum
orifice radii for instability at various Pstatb/u val-
ues, for the liquids of Table I. The maximum tolerable
value of surface tension pressure is also tabulated.

The Physical Experiment

The setup consists of a small stainless steel
nozzle, with outside diameter 230 um, which protudes
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470 uym from a backplate. The nozzle is held 600 um
from a flat field plate. The backplate is
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Figure 5, Meniscus Shapes at Stability Limit
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Figure 6. Stability Regimes
TABLE III

MINIMUM ORIFICE RADII FOR ELECTROSTATIC LIQUID

EJECTION IN AIR, Pstat = 0

Pstatb/a Pemaxb/°

at stability

o/b (Pa)

at air ethylene
breakdown water glycol methanol

minimum radius (mm)

0.0 4,05 9.8 7.2 4.8 2.2

0.5 3.0 13.3 5.4 3.6 1.7

1.0 2.0 19.9 3.6 2.4 1.1

1.15 1.72 23.4 3.1 2.07 0.94
1.5 1.0 39.8 1.8 1.21 0.55

1.73 0.51 78.1 0.923 0.62 0.28

1.97 0.058 685. 0.10%5 0.070 0.032

approximately 1 mm from the field plate. The field

plate has a 400 um hole opposite the nozzle to catch
any liquid jetting from the meniscus., The nozzle is
held at ground potential, while the field plate is
supplied from a high voltage source through a current



By rearranging terms and substituting the balance rela-
tion from (2) above, (8) becomes

2
dp _ - 2 ,dpy2 _ _dp/de 1 .dpy2
- = L > (de) +1]p + o[ S_EEE—E][l * (33) ]
de p p
P b P b
_ 92[ egax F(8) + szat 10+ A (22)2]3/2 9)

2 "de
4

where p 1s the normalized radius r/b. All physical
parameters are reflected in the dimensionless ratios
b/¢ and P b/a.

XUnfortuna%%T&, (9) is of second order, so that
the boundary condition which requires the meniscus to
contact the electrode surface does not fully specify
the problem. A second condition is the requirement of
nonsingular curvature, which implies that dp/dé = 0 at
the axis (i.e. the meniscus has a horizontal tangent
plane at its tip). The two conditions are awkward,
since they are specified at a different locations. To
cope with the difficulty, a so-called shooting method
was used: a value of dp/dé at the meniscus edge is
suessed. Equation (9) is then solved iteratively until
dp/de = 0 at the axis x = 0.

P
ema;

FIELD SOLUTIONS FOR SAMPLE CASE

Basic Iterative Procedure

The electric field function F(8) in (9) is, of
course, also a function of shape, so that (9) is an
implicit equation. For iterative solution, the prob-
lem is discretized and the following procedure is used:

1. For a given P
P = 0.
e

stat’ find the meniscus shape for

This meniscus intersects the plate with
a definite contact angle ., which gives a ten-

tative value for dp/dé at the meniscus edge.

2. Given the meniscus shape, solve the Laplace equa-
tion and find the normalized electric pressure
F(6) at surface points. A standard finite element
package, ANSYS (Swanson Analysis Systems Inc.) was
used for the results presented here,

3. Perform a fourth-order polynomial fit to the
finite element results in order to obtain a con-
tinuous function which represents the electric
pressure along the surface.

y, Integrate (9) with the fourth-order Runge-Kutta
method to find a tentative meniscus outline curve.

5. As described above, the nonsingular field assump-
tion requires that dp/dé = 0 at the y axis. If
this 5endhidOReptic "o Thtea it ofMSedptso
This is the iterative process for solving (9), as
described above. Contact angle a_ will be dif-
ferent from the initial value.

6. If the shape has changed very little, assume that
a solution has been found. Otherwise, return to
step 2.

The final result is a meniscus shape corresponding to
a chosen value of P b/c and a specific value of

P b/o. stat
emax
Results
When P b/o is zero, a stable meniscus will form
emax
whenever
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0 <P

otatl/9 < 2 (10)

statb/o was

was used to

To test the numerical methods, a value of P
set, and an erroneous contact angle o,

begin the iteration scheme. In all cases, meniscus
shape converged to the correct spherical section.

A more interesting case appears when Pstatb/c is

zero. Then the shape is determined only by the elec-
tric field value Pemaxb/a' Shapes for several values
of Pemaxb/o are shown in Figure b4. Naturally, the
asymptotic curve | Pemaxd
- O] cone T
£ o 1.1 0346
B 2: 1 0.666
- 3| 1.995
S < | 4: | 3.054
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£
[ .
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Figure 4. Meniscus Shape Outlines with Pstat = 0.

higher the field, the more the meniscus extends from
the orifice. Above P b/¢ = 4.05, convergence could

emax
not be achieved. Presumably, this corresponds to the
surface stability 1limit: if the ratio exceeds 4.05,
liquid should be ejected from the surface.

Instability in the numerical solution is related
to the appearance of reverse curvature of the meniscus.
If more iterations are performed, the meniscus grows
without bound. This is a psuedo-physical process in
which meniscus extension increases the electric field
enhancement, and the meniscus extends and sharpens its
curvature in attempting to restore the static balance.

It is interesting that a ratio of 4.05 is far
higher than the limiting ratio of Pstatb/o: a meniscus

can support twice as much peak electric pressure as
hydrostatfc pressure because the electric pressure is
not uniform. Notice that while the solution appears
to approach a conical shape, it is still quite rounded.
The asymptotic cone shown in Figure U4 has an apex angle
of 122° -- quite different from the Taylor cone. This
might be caused by the truncated cone in a uniform
field, which differs from Taylor's system of an infi-
nite cone in a properly chosen field. It might also
reflect Taylor's static results: he not-iced the 98.6°
cone only when the meniscus was actually in motion,
and saw shallower angles on stationary meniseci.

For a given Pstat' the maximum stable meniscus

height case has a corresponding value of Pe ax/b° which
can be regarded as the minimum necessary %o pull out
droplets from the meniscus. Assuming that E cannot
exceed the atmospheric breakdown strength of about 3

MV/m, P (9.10'3)/2, or 39.8 Pa.

emax

Given the minimum P b/0, with P limited to the
emax emax

= 39.8 Pa, this implies a minimum

cannot exceed eo

breakdown level Pebk

b/c ratio to reach instability, or conversely a maximum
o/b (surface tension pressure) that can be tolerated
without flow. For a specific liquid, this leads to a



limiting resistor. An anti-wetting agent. Rain-X (a
registered trademark of Unelko Corp., Scottsdale,
Arizona), 1is applied to the outside of the nozzle in
operation. The meniscus 13 observed and photographed
through a long-working-distance stereo microscope. A
photograph of a meniscus qnd the setup, taken at 50X
magnification, appears as Figure 7.

Figure 7. Photograph of Experimental Setup at 50X

A preliminary experiment was performed with meth-
The methanol was filtered to avold cliogging the
The accepted value of surface tension is 0.022

/m, and density is 790 kg/m3.

to the nozzle from a small

anol.
nozzle.

The liquid is supplied

reservoir. P is con-
stat

trolled by adjusting the reservoir height. For methanol
with this nozzle, the surface tension pressure o¢/b is
190 Pa. The expscted hydrostatic limit i{s twice the
surface tension pressure, or 380 Pa., The pressure head
of a methanol column is 7.75 Pa/mm, which implies a
hydrostatic limit for this nozzle of 49 mm head. The
measured value of 50 + 2 mm is in good agreement with
this.

the breakdown pressure ratio limit
From the graph of Figure 6, this

statb/c of 1.8,

should require P
{44,171 mm head) in order to destabilize the meniscus
electrically. Actual results showed that a sudden
applied voltage of 2.0 kV was able to destabilize the
meniscus with a head as low as 29 mm, significantly
less than the expected value. Vibration, wetting of
the outside of the nozzle, or nonuniformities in the
nozzle tip could contribute to the discrepancy. For
example, the Rain-¥X coating appears to be compromised
after it is wetted by methanol. The results also showed
that a near-conical meniscus could be achlieved at very
high fields, although the tip was so fine that it is
not clear whether the shape was static or involved a
very fine jet flow.

or P

stat of 340

Pa

CONCLUSION

Implications of Theoretical Results

In the context of an electrostatic ink jet or sim-
application, the above results give some signifi-
insights into design parameters:

ilar
cant

Surface forces obtained with electrostatic fields
are small, with electric pressures below about 40

2
N/m®.
Electric field forces are balanced by surface ten-

sion., The lower the surface tension, the easier
it is to apply electrostatic forces.
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Water is not a good choice for working fluid in
an electrostatic liquid control applicaticn because

of its high surface tension. Alcohols have much
lower surface tension, and should be a better
choice.

-- Electric forces benefit from a bias
force, set to aliow a small =2 ic foroes

.
L at,

to overcome surface tension. The required hydro-

static heads are small. For example, methancl

operating from an orifice with b = 0.23 mm and

P b/g = 1.73 requires static pressure of 136

stat 3 q v b

N/mg, which means a head of 1

W

.75 em of methanol.

Future Work

Extensive experiments wiil be performed to test
the theoretical results The static 2ase is & prelude
to more comprehensive dynamic results. The effects of
jet flows, meniscus vibrations, and dynamic
field pulses all need to be studied for insight
practical applications of electrostatic meniscus
trol.

An electric field can control a liquid meniscus
under certain conditions. When control is performed
in air, only limited forces can be obtained. These
low forces require an added hydrostatic prassure in
order to cause surface instability,

Low surface tension liquids, such as
are bettzr for control applications than water.

electriae
into

con-

zleohels,
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