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Particle falling through a viscous liquid tend to form clumps under the influence of viscous forces. An
analysis of this cffect for a falling horizontal lattice indicates that the clumps which form are much larger
than expected on the basts of ncurest neighbor approximations. [his difference in behavior can be traced to

the increasing influence of distant neighbors in two dimensions, an

d suggests that the clumping instability

in three dimensions may not be described as a simple extension of the one-dimensional instability.

i. INTRODUCTION

Two spheres moving through a liquid are often subject
to forces which tend to move the particles relative to
each other. The best known of these forces is the
Bernoulli pressure, which brings the two particles to-
gether if they fall side by side, or forces the trailing
particle into the wake of the leading particle if one of
them takes the lead, The Bernoulli effect is most
noticeable at high velocities, being proportional to V2.
These forces therefore tend to vanish when the particles
are moving slowly (or at low Reynolds number), and the
particles do not move relative to each other,

At low Reynolds numbers, the principal force acting
on the particles is the Stokes drag force given by

Fy=-6nual, 1)

where u is the viscosity of the liquid. If two particles
are falling together, and separated by a distance R > g,
the Stokes drag on each of them is reduced by the
presence of the other, and the two particles will fall
faster. This reduces the effective drag force to!

F,==6mpal(l - 3a/4R). (2)

This reduction in the drag force occurs whether the
particles are falling side by side or at an angle to the
horizontal,

An additional force appears in the low Reynolds limit
which is influenced by the orientation of the two parti-
cles. This force, known as the line-of-centers force,
acts equally on both particles, and has the magnitude‘

F,cz%(vrpazU/R)cose. (3)

This force acts in the downward direction along the line
joining the centers of the two particles.

Neither the modified Stokes drag nor the line-of -
centers force tends to alter the relative positions of the
two particles, because both forces act equally on each
particle, Consequently, two particles drifting through
a viscous liquid in the low Reynolds number regime will
not tend to clump or to spread as a resuit of fluid forces,

\When more than two particles are present, a new
possibility for instability of the orientation arises,
Consider three particles drifting through a viscous
liquid as shown in Fiy. 1. At low Reynolds number,
Bernoulli forces are negligible, and only the Stokes
drag and line-of-centers force need to be considered.
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The drag force is reduced by the presence of neigh-
bors, and since the center particle has two neighbors,
while the outside particles have only one each, the
center particle experiences less drag, and tends to fall
faster, thus moving even farther ahead of its neighbors,
The line-of-centers force acting on the two outer parti-
cles is due mainly to the influcnce of the center parti-
cle, and tends to move the outer particles over toward
the center of the cluster. The line-of-centers force on
the central particle is the vector sum of two contribu-
tions, and tends to increase its rate of fall even more.
Thus, the original cluster of three particles will

change its shape, with the central particle moving
farther ahead, while the outer particles approach each

other behind the central one. If a horizoatal line of
particles is falling through a viscous liquid, triplet
clusters of this type tend to develop and disrupt the
initiafly uniform spacing of the particles, as pointed out
in a previous paper. 2 The clusters that develop from a
one-dimensional array of particles will most likely be
spaced about four times the original particle spacing,
and will develop when the array has drifted a distance
which is perhaps ten times the original particle spacing.

This result was originally predicted and con{irmed
only for a line of particles, but it has since been used
to explain clumping instabilities in three-dimensional
processes such as bioconvection, ? sedimentation, *
pneumatic transport, 5 and suspension flow. & While this
may appear to be a natural extension, it should be
pointed out that not all uniform arrangements exhibit the
instability. An infinite vertical line of particles, for
example, is stable against clumping (although the ends
of a vertical line may not be),” Since three-dimensional

FIG. 1. Three spheres drifing through & viscous liquid expe-
rience forees temding to clump them,
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FIG. 2. Definition of coordinates for a sphere drifting through
a viscous liquid.

arrangements of particles will include both horizontal
and vertical neighbors, it may happen thatthe instability
is quenched by stabilizing effects due to the additional
particles above and below.

The present paper, which extends the analysis of the
clumping instability to horizontal sheets, represents
the first step in determining whether clumping can be
expected in other arrangements besides the horizontal
line. While originally intended as an exercise leading
to the more important three-dimensional case, the re-
sults showed that the nearest neighbor approximation,
which greatly simplifies the analysis, is severely
limited in predicting the behavior of lattices in more
than one dimension. Since the exclusion of the nearest
neighbor approximation requires considerably more
work in three dimensions, it is hoped that this paper
will both justify the exclusion and furnish the basic
equations and techniques for considering the effect of
all neighbors in two and three dimensions. Actual pre-
dictions of stability, however, are given only for the
two-dimensional horizontal sheet.

In the present work the analysis of a line of drifting
particles will be extended to the case of an infinite
horizontal sheet of particles falling through a viscous
liquid.

Section I presents the general form of the cquation
of motion of a falling particle when influenced by
another particle at an arbitrary position.

This result is used in Sec. III to study the behavior
of the simplest horizontal lattice, a square lattice in
which only the nearest neighbors affect the motion of
any particle, Superposition of the effects of these four
neighbors yields a difference equation which is solved
to determine the growth rate and appearance of the
clumping instability.

In Sec. 1V the more complicated case of a square
lattice with interactions among all of the particles is
treated, Although the method s similar to the nearest
neighbor case, the results show a striking difference:
The most unstable disturbances have very long wave-
lengths, much longer than the interparticle spacing.
This implies that the clumps which form in a horizontal
sheet will be much larger than those expected by a

simple generalization of the one-dimensional case.

Section V discusses some of the implications of this
result,

Il. THE FORCES ON TWO FALLING SPHERES

Since the instability develops in a Iattice, it is often
more convenient to express the interpacticle forces in
Cartesian coordinates rather than as the drag and line-
of-centers vectors of Sec, 1. Counsider the forces act-
ing on the particle at the center of the coordinate sys-
tem shown in Fig. 2. Before the instability develops,
all of the particles are falling at the same velocity, - U.

Once the drift velocity has been determined, the
perturbations from the steady state can be analyzed by
the solution of the equations of motion for a typical
particle placed at the origin {or convenience

6ruau=g+f. 4)

In these equations, f represents the perturbation in the
drag force when a neighboring particle is displaced
from its original position and g represents the perturba-
tion components of the line-of-centers force,

The perturbation drag force f can be derived from the
expression for the drag force given earlier [Eq. @)].
Consider a particle at the origin, with a neighbor at

(x, v, z). The distance between the two particles can be
written as
r=xig+yi,+ 2, (5)

If the neighboring particle is displaced slightly to a new
position

r+6r,
the drag force is changed by an amount

{=VF,-6r )

" 50 that the perturbation drag force is

3 Ox+ y0 o}
l=6ﬂuaU(za)——r—-——x x+"},2y+z z, m
where R
R= (4324 292, ®)

Likewise, the perturbation line-of-centers force fol-

* lows from Eq. (3) as

2
-2, (2 3xzz) <3xvz) (r _3xz )5
= - bx — 5y *\ I~ Ry /%%
om0\~ R )R OWR ’

(9a)
-2g, (3xvz) z 3&’22) <v 3vzz)
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Srpa U 7 ) m - w )\ e )%
(9b)
-2 3.rzz) (szz) (22 323 )
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{9c)

Consider a square horizontal lattice of identical par-
ticles initially located at (x, v, 2) = (nd, pd, 0), where n
and p are integers. After a perturbation the location of
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R V2 =8/2a)

(1.25)
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FIG. 3. Contours of growth rate in the wavenumber plans for a
square lattice with only nearest neighbors interacting. Max-
imum growth occurs at kd/7=1d/7=1/2.

the particle originally at (nd, pd, 0) is given by
x=nd+bx, ,
y=pd+by,,, (10)
z="08z,.

The equation of motion for the particle initially at the
origin {0, 0, 0) and affected only by its neighbor at (nd,
pd, 0) has the form

9 rpa®v n

Sruaus =g =g Gy O Ozad Ha)
9 TudtU p

anav— - 3 _dr (—nw (52” - 5200), (1 lb)
9 nuazU(n(Gx,,,- 8¢po) + p(8,p ~ Bx )) .

bruaw=5—— R (11c)

I1l. THE STABILITY OF A HORIZONTAL LATTICE
WITH NEAREST NEIGHBOR INTERACTIONS

When more than one neighbor is included, the pertur-
bation forces for the additional neighbors are added to
the richt side of these equations. For instance, when
the nearest neighbors at (0, 1), (0, - 1), (1, 0), and
(-1, 0) are considered, the equation for motion in the
x direction becomes

Bruan= -3 (TuaU/R?) (82,9 82 ,4). (12)

This equation, and the corresponding equations for the
other velocities are differential-difference equations
whose solution has the form

5v = Re[Texp(3) exp(jhnd) exp(jlpd)]. (13)
with the additional definition

as 2 {all/d®), (14)
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the equatlon for motion in the x direction becomes
Ax==2jasinkdz . (15a)

Similarly, the equations for motion in the remaining
two directions become

{15b)
(15¢)

By =~ 2ja sinld 2
Bz =2ja sinkdx +2jasinldy .

These equations have a solution only if the growth rate
Btakes on one of the eigenvalues

8=0 (16)
8=t 2a{sinkd + sin®ld)' /2, ()

The existence of a positive eigenvalue for the growth
rate indicates that the lattice is unstable, and small
disturbances will grow and disrupt the regularity of the
array. The growth rate varies with the wavelength of
disturbances, and has its maximum value of

Boue =22 @ (18)

when kd=+1/2 and I4 =+ 1/2. The growth rate at other
wavelengths may be visualized by the Brillouin plot of
Fig. 3 which shows contours of constant growth rate in
the wavenumber planes. Figure 3 just shows the first
quadrant of the entire Brillouin plot, but since the plot
is symmetric about both the %4 and the [d axes, there is
no necessity of showing the remaining quadrants.

The Brillouin plot shows the most unstable wavelength
for the instability, but does not give its form, which is
needed in interpreting its effect on sedimentation. The
form of instability is determined by substitution of the
wavenumbers for maximum instability into the equations
for the displacement amplitudes [Eq. (15)]. With kd =id
=1/2 and B=2av2, these equations take the form

V2% =-ji,
ﬁ&=-j2’ (19)

V22 =j% +j3.
From these equations, it is clear that the displacements
in the x and y directions are equal, indicating that the
particles move along straight lines when seen from
above. The form of the instability, shown in Fig. 4, is
obtained by substituting the wavelength for maximum in-
stability and the relation between x and v components
into the original assumed expression for the displace-
ments

bx = Re[% exp(pt) exp(jhnd) exp(jlpd)] (20)

and evaluating at the original particle positions (n, p).
After developing for some time, the instability would
‘appear as alternate dense and light bands across the
lattice.

So far, only the instability at kd =/d =n/2 has been
discussed. Since the Brillouin plot ts symmetric, there
arc three other wavelengths of maximum instability,
corresponding to waves proparating at + 457 to the lat-
tice. When these waves are superposed, the particle
displacements and density bands will appear as shown
in Fig. 5, which resembles @ pattern of dots. When
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only nearest neighbors interact, the dots will be spaced
at twice the original spacing of the particles for the
most unstable perturbation.

IV. THE SQUARE HORIZONTAL LATTICE WITH ALL
NEIGHBORS INTERACTING

When more than the nearest neighbors affect the
motion of the particle, the stability can still be analyzed
as in Sec. lII, using Eq. (4), (7), (9), and superposing
the effects of all of the neighboring particles. Thus,
the equation for motion in the x direction takes the form

=-a Z }_: n(? + p?)2/%(62,, = 624), (21)
Ree® paew

where the summation extends over all of the particles
which affect the motion of the central particle. With
the assumption of sinusoidal disturbances the equations
of motion for the perturbations from the original lattice
gpacing may be written as

52 = - 2ja£ S(kd, Id)’
By = = 2jaz S(id, kd), , (22)
B2 =2jaz S(kd, ld) + 2jay S(id, kd),

where

S(kd,ld)E-z-l.- Z Z (2 + p2)73/2 [exp(jknd) exp(jlpd) - 1].

Ao puoew

(23)
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FIG. 4. Devolopment of the instability for a disturbance in &
singlo quadrant of the Brillown plot. .
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FI1G. 5. Development of the instability for a disturbance with
components in all four quadrants of the Brillouin plot.

These equations have a solution only if 8 assumes one
of the eigenvalues

g=0 (24)
B=1+2a{[S(kd, 1d))?+[SUd, kd) |} /2. (25)

This result is similar to that obtained when only
nearest neighbors were considered. An important dif-
ference arises, however, when the Brillouin plots are
calculated. The plot for all neighbors (Fig. 6) shows
that the most unstable wavelengths do not occur near
7/2 as with nearest neighbors, but near the origin of
the plot, corresponding to very long wavelengths. This
means that the instabilities which develop in a large
horizontal array of particles will be much larger, and
hence more visible, than would be expected by nearest
neighbor theory.

V. DISCUSSION

The clumping that occurs on a horizontal sheet is
similar, in many respects, to the clumping seen earlier
on a falling line of particles. There is one difference,
however, which has important implications in practice:
In the horizontal sheet, the most unstable disturbances
have infinite wavelengths. This implies that the clumps
which develop spontancously are likely to be much larg-
er than the interparticle spacing. A sheet of particles
with 10 p spacing, for instance, will soon develop tr-
regularities casily visible to the naked eye.
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FIG. 6. Contours of growth rate with all aeighbors interacting.
Maximum growth occurs near the origin.

These large clumps can be predicted only when the
nearest neighbor theory is extended to account for all
interactions among particles. This distinct change in
predicted behavior did not occur in the one-dimensional
study when additional neighbors were considered. In
two dimensions, however, there are many more neigh-
bors at a given distance, and their combined effect will
be greater than in the one-dimensional case. Clearly,
the transition to a three-dimensional lattice will be ac-
companied by an even greater influence from the more
distant neighbors, since there are even more neighbors
in three dimensions than in two. Because of this, the
temptation to generalize one- and two~-dimensional re-
sults to a three-dimensional lattice should be resisted,
even though (or especially since) the three-dimensional
case is of great practical importance.
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Although clumping always occurs in horizontal sheets,
its prowth may be so slow that it is not apparent under
particular experimental conditions. If the particles are
falling at a velocity U through a distance L, the growth
in amplitude at the most unstable wavelengih will be
given by exp(3mL/Z/12) from FEq. (25). [t apoears from
this formula that the total growth is independent of the
drift velocity, and depends only ou the geometry. The
quadratic factor of particle spucing i the exponent can
be very important in determining whether the formation
of clumps will occur rapidly cnough tu be noticeable.
For example, if a lattice of particles with a 1 u radius
drifts a distance of 50 1, the growth will be

exp(s—; 9()5(——;39—)) =2.86%10°
if the particles are spaced 5 p apart (this corresponds
approximately to a volume concentration of tra®/d?
=33.5%107%). The growth is only 1.1, however, with
a 10 p spacing (concentration=4.18x107). Thus, the
growth of the clumps is increased by more than 10, 000
times when the concentration of particles increases by
a factor of 8. These results are, of course, based on
linear theory, which is not likely to be valid for such
large amounts of growth. It seems clear, however,
that clumping becomes apparent at low concentrations,
and that its magnitude increases very rapidly as the
concentration is increased.
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