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CENTRIFUGAL WAVES ON A FLEXIBLE CHAIN
J. M. CROWLEY*

Xerox Res. Lab., Rochester,
New York 14644, U.S.A.

Abstract

A chain is attached at one end to a rigid rotating hub. Centrifugal force
induces a nonuniform tension in the chain, which therefore supports trans-
verse vibrations. Solution of the appropriate wave equation shows that the
natural frequencies depend only on the rotational speed and the length of
the chain relative to the hub diameter.

Experiments demonstrating the existence of these vibrations show that an
initial impulsive disturbance reoccurs as an ‘‘echo’’ in which all the eigen-
modes reinforce each other. This echo occurs even though the eigenfrequen-
cies are not harmonically related. The explanation of the echo is found in
the (almost) linear relation between eigenfrequency and mode number.

§ 1. Introduction

Rotating brushes are widely used in cleaning operations but the
dynamics of their operation are not often discussed in the literature,
although several interesting effects arise. One of these effects, “‘re-
covery oscillations”, occurs when the bristles vibrate after striking
an object.

In a slowly rotating, stiff brush these oscillations are essentially
bending beam vibrations. In a rapidly rotating brush with limp,
heavy bristles, however, the recovery oscillations are dominated by
the centrifugal tension.

The present paper describes these centrifugal oscillations and
discusses the conditions under which an initial distrubance may be

recreated as an ‘“‘echo’.
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The radial dependence, Y (R), is given by the equation

L TR Y ‘“)2 B, (2.5)
ar dr o) '

where » = R/L. The solutions of this equation are Legendre func-
tions

y = APui(r) + BOur) (2.6)

i [L +1 T. (2.7)
Q 2

The constants 4 and B are determined by the boundary conditions
at either end of the chain. At the outer end, (» = 1), no forces are
applied, so the transverse force must vanish

in which

() 2

—~| =o (2.8)

r=1

The tension vanishes at the outer end, but the second Legendre
function becomes infinite there. If the boundary condition is to be
satisfied, the coefficient of the second Legendre function must
vanish, so that the solution has the form

y = APy7). (2.9)
At the other end of the fiber, the displacement must vanish, or
Py(a) = 0. (2.10)

This condition determines the allowed values of ! for any point of
attachment, a. This in turn gives the natural frequencies of the
fiber through (2.7). These natural frequencies have been calculated
for the range of attachment points (0 < a < .95) and plotted in
Fig. 2. When the fiber is attached directly to the center of rotation
(a = 0), the allowed values of / are = 1, 3,5 ..., corresponding to
the first, third, fifth ... Legendre polynomials. As the point of at-
tachment moves out toward the end of the fiber, the natural fre-
quencies all increase, as shown in the Fig. The shape of the first
few eigenmodes in shown in Fig. 3 for attachment at the center
(@ = 0). In all modes, the largest deflection occurs near the outer
end of the fiber, where the centrifugal tension is smallest.
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Fig. 3. The first three eigenmodes for centrifugal vibrations.
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Fig. 4. A sketch of the experimental apparatus used for studies of the
centrifugal vibrations.
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are not harmonically related, as they are i simple vibrating sys-
tems. When the experiment was performed, however, it happened
that the original disturbance was almost exactly reconstructed at
a point approximately opposite the initial disturbance.

Fig. 5 shows the response of the chain rotating in the clockwise
direction and struck on its end at approximately 9 o’clock. This
picture, taken with a stroboscope, shows the echo occurring at ap-
proximately 4 o’clock, after a complex series of vibrations. A com-
plementary picture (Fig. 6), taken with a 30-second exposure, shows
the echo position more clearly. It is apparent from this picture that
the end of the chain is noticeable displaced only at the echo posi-
tion, indicating that the amplitude of the disturbance is much larger
there than anywhere else.

§ 4. The source of the echo

It was first suspected that the echo occurred because the striker
excited one eigenmode very strongly. Calculated plots of the am-
plitude of the eigenmodes versus time (Fig. 7) disproved this con-
jecture, since none of the modes showed the behavior observed in the
experiments. A striking characteristic of these plots, however, is
the coincidence of all eigenmodes at a time corresponding to ~.6
of one revolution. This indicates that even if the eigenfrequencies
are not harmonically related, the initial disturbance can be re-
created at some later time, forming an echo.
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Fig. 7. Amplitude of the fiber end versus time for the first six centrifugal
eigenmodes. Reinforcement of all modes occurs at the echo point.
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Fig. 8. The eigenfrequencies of the centrifugal vibrations increase linearly
with the mode number if the fiber is attached close to the axis (@ < 1).
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Fig. 9. Variation of the echo position as the attachment point is changed.
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In the experiment described here, the echo occurs at a time de-
termined by the point of attachment of the chain and its rotational
speed.
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different values of attachment point, a. For low values of the para-
meter a, the plot is close to a straight line, and we should therefore
expect an echo. For high values of a, the plot departs from linearity,
and the echo should therefore be weak or absent.

This analysis indicates that the echo should occur at a time in-
versely proportional to the spacing between adjacent eigenfrequen-
cies, which is determined only by the attachment point, a.

The position of the echo was measured on the experimental ap-
paratus, and plotted versus “‘a’’ in Fig. 9. Since the echo consists
of a rapid snap of the end of the chain, the actual position was
bracketed by measurements of the points of maximum forward (+)
and backward (—) displacement. Comparison of these results with
the theory shows good agreement on all ranges of “a” for which
the echo was present.

At higher values of the parameter @ (> ~.6), the echo was weak
or absent. This is to be expected, since the eigenfrequency spectrum
becomes more nonlinear and reinforcement does not occur simul-
taneously for all modes.

§ 5. Summary
When a chain or flexible fiber is spun about its end, centrifugal
tension leads to transverse oscillations which are described by
Legendre’s equation. The natural frequencies of these oscillations
are given by

on VI +1)
Q 2

where [ is determined by the attachment point of the chain through
the transcendental equation

P(a) = 0.

Although the natural frequencies are not harmonically related,
both theory and experiment show that an ‘echo’ can form at some
time after an initial short disturbance. This echo, which reproduces
the original pulse by superposition of eigenmodes, appears to be a
possibility in any dynamic system in which the eigen frequency
spectrum is close to a linear function of mode number, i.e.

wp =~ a -+ fn.
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This effect can be explained if the eigenfrequencies are repre-
sented by a Taylor series of the form

om = o + pfm + ym? 4 ... (4.1)

where the mode number, m, can only assume integral values. A
necessary condition for coincidence of two modes which are sinus-
oidal in time is that their phases be equal at the point of reinforce-
ment. This condition may be written as

wmt = wypt[mod 27) (4.2)

where the symbol [mod] accounts for the periodicity of the phase.
Substituting the expression for the eigenfrequencies into the phase
condition yields

Bm — n)t + y(m2 —n2)t 4 ... =0, 2x, 4m, ... (4.3)
or
2
t— T ©, 1,2, ...). (4.4)
Blm — n) + y(m? — »n?) + ...
The dependence of the coincidence time on the mode # number
indicates that different pairs of modes will coincide at different
times, rendering the recreation of the original disturbance impossi-
ble. If the eigenfrequencies are linearly related to the mode number,
however,

y=0=..=0 (4.5)
the expression for coincidence time
27
= — (4.6)
Blm — n)

depends only on the difference of the two mode numbers. Thus, the
first and second modes will coincide at the same point that the
second and third modes coincide, and all three modes must there-
fore coincide at the same point. A simple extension of this argument
shows that modes coincide at the same point

t = 2r/B. (4.7)
Thus, a strong echo will occur at ¢ = 2r/f if the eigenfrequencies

are a linear function of the mode number. Fig. 8 shows the de-
pendence of the centrifugal eigenfrequencies on mode number for
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Fig. 5. A stroboscopic picture of the oscillations on the chain.

Fig. 6. A time exposure of the rotating chain, showing the position of the
echo.
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Fig. 2. The natural frequencies of the fiber as a function of attachment
point.

§ 3. Experiments with the centrifugal wave
Several experiments were performed to determine whether these
oscillations in fact exist, and whether they behave as predicted by
the above analysis. The experimental apparatus consisted of a
chain attached to the shaft of a variable speed motor as shown in
Fig. 4. As the chain rotates, its end collides with a striker, whose
position is adjustable. After hitting the striker, the chain oscillates
as it rotates. This oscillation can be viewed under stroboscopic il-
lumination or photographed.

When the chain is struck at the end, a broad spectrum of vibra-
tions is excited, and it might be expected that the resulting vibra-
tions of the chain .will be incoherent because the eigenfrequencies
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§ 2. The model

The centrifugal vibrations can be adequately described by a model
with a single, limp fiber attached to a rotating hub, as shown in
Fig. 1. This fiber will be called a ““chain’’, to indicate that it has
mass, but it is normally incapable of resisting bending. The chain
can move in the azimuthal direction subject to a radial tension in-
duced by centrifugal forces. The chain is attached to the hub at
the point R = Rj, and extends to R = L. The chain has a density
per unit length p, and rotates at the constant angular speed L.

Fig. 1. A model of the brush fiber attached to a rotating hub.

The centrifugal tension in the fiber is determined by taking a
radial force balance for a differential length of the chain yielding

dT

< = PR (2.1)

Solution of this equation with the condition that the tension vanish
at the end (R = L) gives the centrifugal tension as

r— P [1 - (5)2]. (2.2)
2 L

Following standard procedures, the wave equation for transverse
vibrations of the chain is given by

0 oy o2y
EE[T‘R) *af} =P @3)

This equation has solutions of the form

y = y(R) cos wt. (2.4)



