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An electric field normal to a conducting liquid jet causes spatial instability of the kink mode. The
growth rate of this instability can be calculated from a dispersion relation only if the jet velocity
is constant. In this paper, the growth of waves on a falling jet is studied under the assumption that
the fractional change in the velocity is small, and several approximate dispersion relations for the

limit of very fast and very slow growth are given.

I. INTRODUCTION

Spatially growing waves occur in such diverse
physical systems as the laminar boundary layer,’
the electron beam amplifier,® the liquid jet,® and
the thin liquid film.* The assumption that the
parameters of the system are constant in the direc-
tion of wave propagation simplifies the theoretical
study of these waves to the point that the growth
rate is then a constant determined by the dispersion
relation in terms of the applied frequency and
transverse parameters of the system. This simplifica-
tion of theory, however, leads to difficulty in evaluat-
ing experimental results because the physical systems
often change in the wave direction. For example, the
thickness of the laminar boundary layer increases
in the direction of flow, as does the velocity of a
falling liquid jet. In such cases the problem of
bridging the gap between theoretical predictions and
experimental results must be solved.

The first and most straightforward approach to
this problem is the reduction of the inhomogeneity
in the physical system by careful design of the experi-
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ment. If sufficient reduction cannot be achieved, a
correction to the theoretical results must then be
sought to take account of the remaining discrepancy.
The latter approach will be discussed in the re-
mainder of this paper in terms of the transverse
kink waves on a liquid jet, a system which has
recently enjoyed great experimental popularity.®'*~®

II. DESCRIPTION OF THE SYSTEM

Figure 1 shows a liquid jet of radius R(z), density
p, and surface tension T. The jet falls with a velocity
V (z) which increases under the influence of gravity
from the entrance to the exit of the length under
consideration (0 < z < L). A concentric electrode
of radius d at a potential $, surrounds the grounded
jet, thus setting up an electric field in the radial
direction. Under the influence of this field a trans-
verse disturbance of the jet §(z, ) will grow in
space as it propagates downstream.

To simplify the analysis, we shall assume that
the wavelength of the disturbance is very long com-
pared with the diameters of the jet and the electrode.
Under these conditions, the equation of motion can
be derived from the transverse force balance on a

§ U. Ingard and D. S. Wiley, Phys. Fluids 5, 1500 (1962).

¢ S. Middleman and J. Gavis, Phys. Fluids 8, 222 (1965).

7 J. M. Crowley, Phys. Fluids 8, 1668 (1965).

8 F. D. Ketterer, Ph.D. thesis, Massachusetts Institute of
Technology (1965).
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Fiac. 2. A force balance on a dlfferentlal length of the jet gives
the equation of motion in the long wave limit.

where 8 = 2¢L/U? measures the effect of the gravita-
tional acceleration over the length of interest. By
conservation of mass, the radius of the jet is
R(T/ vrN—1
—— = () ", 8
R =0y =" ®
The boundary conditions are both applied at
the point of excitation if &’ < 1 (supercapillary
jet). For an exciter which applies a force over a
short length of the jet, the normalized boundary
conditions are very nearly of the form’

500) = 0, (9a)
dé .
0 = 1. (9b)

III. GROWTH ON THE UNACCELERATED JET

Any disturbance on a supercapillary jet moving
at a constant velocity (8 = 0) is composed of terms
of the form®

exp (k.x) exp i(wt — k).
where

k, = —— (10a)

1—a

[7\7(1 — a _— (aw}

ki = 2 . (10&))

1l -«
This represents waves propagating in the direction
of flow with a phase velocity ¢, = «/k.. The am-
plitude of these waves grows or decays aceording
as the sign of k, is positive or negative. The quan-
tity k. is called the growth constant, and its study
is the chief goal of experimental investigations of
growing waves.>"'*"™

The growth rate depends on the velocity of the
jet, which appears in the quantities N, a, and w.
_”—(}.«ESchubauer and H. K. Skramstad, NACA Report

No. 909 (1943). )
14 A, M. Binnie, J. Fluid Mech. 2, 551 (1967 ).
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Fic. 3. As the velocity increases, the growth rate at low fre-
quencies decreases, while the growth at high frequencies in-
creases.

This dependence is illustrated in Fig. 3, where k;
is plotted versus w for various values of velocity
while keeping all other parameters constant. At
low frequencies, increasing the velocity lowers the
growth rate because the disturbance is swept down-
stream faster. At higher frequencies, in the vicinity
of cutoff, another effect dominates. Here the growth
rate is proportional to wavelength and, since in-
creasing the velocity increases the wavelength, the
growth rate increases.

IV. GROWTH ON THE ACCELERATED JET

in the usual method of measuring the growth
rate, a force is applied to the jet at some upstream
point, and the magnitude of the resulting dis-
turbance is measured at two points along the jet.
The fractional difference between these two measure-
ments represents the growth of the wave over the
distance separating the two points. If the results of
this measurement are to be compared to theoretical
predictions based on constant jet velocity, the
fractional change in velocity between the two points
should be kept as small as possible. One possibility
is to shorten the length under consideration. As
the section becomes shorter, however, the difference
in amplitudes becomes smaller, and consequently
more difficult to measure accurately. The fractional
change in velocity ean also be decreased by increasing
the velocity, but since the growth rate of the waves
is inversely proportional to the velocity, the growth
over the measurement length is again decreased. In
addition, the jet will break up into droplets at a
shorter distance from the nozzle if the velocity is
too high.’*'® Thus, in practical work, the theory

15 A. Haenlein, Forschung 2, 139 (1931).
16 C. Weber, Z. Angew. Math. Mech. 11, 136 (1931).
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Fia. 4. Comparison of solutions with no wave growth: 1.
numerical solutions, 2. (ki)es, 3. (ki)es, 4. (ki)ec, 5. perturbation
approximation (N = 0, w = 0, R/d = 0.322, o* = 0.01).

and compared to the numerical solution of the equa-
tion of motion. They are

(). = [ k(o) do, (1)
k)ep = ki(z = 3), (18)
(ki)sc = %[k,(O) + ki(l)]) (19)

where k,(z) is given by

b - V@IU@ ~ @] ~ @)
: Ux) — o(z)

The first approximation represents the mean growth
rate by an integral over the length of jet under
consideration. The second and third expressions may
be considered as approximations to this integral,
valid when the growth rate does not change ap-
preciably over the length of interest.

The approximate growth rate technique is not
restricted to the long wave limit considered here
in which the disturbance is completely represented
by a differential equation; it can be used whenever
a dispersion relation for the corresponding homo-
geneous case can be formulated. The only restriction
is that the growth rate of the disturbance is much
larger than the rate of change of the physical param-
eters (velocity, radius, etc.) which determine the
growth rate.

For the accelerated jet, an additional correction
must be made, since the transverse wave amplitude
is affected by gravity even in the absence of in-
stability or wave motion (k, = k; = 0). The envelope
will have a parabolic shape, characteristic of a falling
body with an initial horizontal velocity which is
given by

Acceleration (83)

F1a. 5. Comparison of solutions for moderate growth (N =1,
w =0, R/d = 0.322, o = 0.01).

_ (4 gt =l
38

neglecting the effect of surface tension. The approxi-
mate expression for wave growth must, therefore,
be multiplied by this factor to obtain the complete
expression for the displacement amplitude of the
jet,

6 (20)

N ]

where (k,)os: is one of the three effective growth
rates given in Eqs. (17)-(19).

2y

VIII. COMPARISON OF DIFFERENT EXPRESSIONS

These three approaches are compared in Figs.
4-7 for several different operating points. The figures
show the displacement amplitude at the end of the
section of jet (x = 1) as a function of total change
in velocity over this length. Figure 4 represents a
zero-frequency case in which the electric field (and
hence the growth) is absent. Since k; = 0 under
these conditions, only gravity affects the amplitude
of the disturbance. All three of the approximations
are identical, of course, and they also agree quite
well with the numerical solution. This offers evidence
that the parabolic term [Eq. (20)] accounts for the
gravity deformation satisfactorily.

The perturbation result, which is linear in 8, can-
not follow the nonlinear exact solution, but its
slope at low 8 is equal to that of the other results,
indicating its validity.

Figures 5 and 6, which show the zero-frequency
response for N = 1 and N = 25 (growth rates
k; ~ 1 and k; ~ 5, respectively) indicate that the
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the study of waves in nonuniform media, such as
boundary layers.’® It should be stressed that it is
not valid at marginal stability, since the growth
rate in this situation is small and the more general
approach given above should be used.

An analysis of Eq. (22) shows that the error
introduced into the growth constant by neglecting
the second term is of the order 1/k;x, and is due
principally to the decaying wave excited at the
origin. Thus, the total growth from the exciter to
the test section should be large for good accuracy.

XI. SUMMARY

The magnitude of a growing disturbance on an
accelerated liquid jet is approximately given by

- 0= o

where (k:).;¢ is an average growth rate over the
length of the jet. If (k,).:( is calculated by an integral
mean

ko = [ ki@ de, a7

the error is less than 19, fora < 1, N < 25,8 < 2,
w < 0.90,.:0rr While for the simpler expression

(ki)eb = kiz = 3); (18)

the error over the same range is less than 10%.
The perturbation expression (Eq. 16) gives greater
than 109, error for 3 > 0.3 over the same range.
When the section of jet under consideration is

CROWLEY

far from the excitation, the growing wave dominates
all other disturbances and the wave envelope is
given by the expression

5z + Az) = (e f T @ de, (25)

where k() is calculated using the local parameters.
The error in this expression depends on the distance
between the excitation and the test section and is
approximately given by

fractional error ~ .

k.x

This paper presents, in effect, a justification of
methods used in previous experimental work on
falling liquid jets. This work included measurements
of the response of a jet to known excitation as well
as measurements of the growth rate far from the
exciter’ and studies of the effects of external feed-
back loops on the stability of the jet.'” In all of
this work, the use of a complex wavenumber based
on one of the averages (18) and (19) gave good
agreement between experimental results and theories
derived with the assumption of constant velocity.
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Exit Displacement, ¢ (1)

Acceleration {B)

Fic. 6. Comparison of solutions for extreme growth (N = 25,
w = 0, R/d = 0.322, o2 = 0.01).

three approximations give somewhat different results.
The best is the integral mean [Eq. (17)] which
differs less than 19 from the numerical solution
for the most extreme case studied (k; >~ 5, 8 = 2).
It appears that this approximation would be useful
anywhere in this range.

The midpoint approximation [Eq. (18)] is some-
what inferior, differing from the exact solution by
about 109, for k; ~ 5 and 8 = 1. For k; = 1, how-
ever, the discrepancy is less than 1%, and this
approximation, for practical purposes is equivalent
to the numerical solution. The remaining approxi-
mation [Eq. (19)] which averages the initial and
final growth rates, gives results inferior to the mid-
point evaluation, and should not be used.

IX. AMPLITUDE VS FREQUENCY

The numerical solution is valid for all frequencies;
the three approximations are not, since they assume
an unstable disturbance growing at a rate k,. At
high frequencies the waves no longer grow, and the
jet supports only stable propagating waves. Below
this cutoff, however, the approximations give good
agreement with the exact solution, as shown in
Fig. 7 for 8 = 1. It appears from this figure, and
other numerical results not shown, that the integral
approximation [Eq. (17)] is as good over most growth
frequencies (0 < o < 09w, ui0rs) as at zero fre-
quency. The-accuracy of this approximation is not
seriously affected by changing the values of R/d.

X. FAST GROWTH RATES

Far from the exciter, the exact nature of the
excitation will be unimportant if the wave is growing,
since the decaying part of the response will have

EXIT DISPLACEMENT, (1)

o i L i
o] 2 4q 6 8 10 2 3

FREQUENCY (w)

Fi1g. 7. Comparison of solutions as a function of frequency
(wcuwii =~ 10, o = 0‘01, N = 1.0).

died out. At great distances then, the magnitude of
the disturbance is proportional to

¢ ((1 + Bx)* —_l>
k; 3B

If the amplitude is now measured at two points
downstream, their ratio is

Sz + Ax)
§(z)
4B+ A —1( &
- 1+ 8x)t — 1 (x + A.r) exp [k(Az)]

or
[z + Ax)]
In —%)‘— zki(\Al‘)
M+8xz+a))—1( =z
+ 1“[ 1L+ Ba)f — 1 (x + Ax)]' (22)

If the rate of change of the velocity is much
smaller than the growth rate throughout the region,
this equation can be expressed as

@5—5 = k(@) da, (23)

where k; is now evaluated at each point. This equa-
tion may be integrated to

8z + Az) = 8(z) exp [(k)ors Az), (24)

where

1 z+ 0z
(kerr = —A_.’I_:_/; ki(x) dx

and again an effective growth rate is given by the
integral of k.(z). This expression is often used in
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must be modified to account for the changing ve-
locity of the jet.

V. ANALYTICAL METHODS

The most straightforward approach is a numerical
solution of the equation of motion (5) for given
initial conditions. This method, however, yields
little physical insight into the problem and makes a
comparison with the unaccelerated jet very difficult.
In addition, it is not always possible to express the
behavior of the system in a single differential equa-
tion. In this paper the numerical solution will only
be used occasionally to check the other approaches.

A more meaningful attack is a perturbation ex-
pansion in the space varying terms of the form

§ =8 + 85 + . (11)

Expanding the expressions U(x) and E(x) in terms
of Bz, substituting into the equation of motion
(5), and collecting terms yield a series of equations
which can be solved sequentially to give terms in
the perturbation expansion. The first-order effect
of the acceleration can easily be obtained by a
comparison of the two leading terms in the expansion.

Finally, an approximate value of growth rate can
be derived from the dispersion relation for the un-
accelerated jet. This method is preferred for experi-
mental work because it is simple and quick. The
selection of effective growth constants will be guided
by the results of the exact numerical solution and
the perturbation expansion.

VI. PERTURBATION METHOD

In a growth measurement, only the magnitude
of the disturbance if of interest. This magnitude is

18] = 180 + B + -]

or, to first order in 3

18] =~ (3% so*[l +4 (g— + %)] ,  (12a)

where 8% is the complex conjugate of §. For the
growing waves, the zero and first-order solutions
take the form

b0 = Ree™ ™7,
61 = (Rl + ill)e-“"z:

where R and I are real numbers. Substituting these
expressions into Eq. (12a) yields

18| ~ R, + BR, (12b)

to first order in B, therefore, only the real part of
the solution is needed.

Substituting the perturbation expansion into the
equation of motion, (4), and collecting terms yields,
for the zero-order equation

1 - ad) £‘§9+ 2w%~5—° — Vo + ) b =0 (13)
and for the first-order equation
(- Chpointh W, s,
= —(1 — 2apa)x %‘z—o
—<wx+1+a°)d60+NL50, (14)

where
N@Br) = Ng+ NBz + ---,
a(Bx) = ay + B + - --
The solution of the zero-order equation (11) which
satisfies the boundary conditions (9) is

R, = (Sﬂ‘hk’“;)L (15)
10

Substitution of this solution into the first-order
equation (14), and solution gives for the real part of
the first-order term

(1 + a3/2) sinh k;ox
(1 - aﬁ) 4k ;o

N [(1 — 2age) (k20 — K20 — whyo + N1]
. 4’9?0(1 - afw)

R, = =4&°

z sinh kmx] ’ (16)

-I::f cosh k;ox — Tod

where k,, and k;, are the real and imaginary parts
of the propagation constant calculated at the en-
trance (x = 0).

This result, which gives the amplitude of the
disturbance in terms of its acceleration and physical
properties, is only valid for small values of B3, the

‘acceleration parameter.

VII. APPROXIMATE DISPERSION RELATIONS

A third approach is to modify the expression which
gives the displacement of the unaccelerated jet (15)
to include the approximate effect of the acceleration
by replacing the constant value of %k, by some
average value of k; over the region of interest. In
this paper, three different averages will be used,
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short length of the jet (Fig. 2). The rate of change
of transverse momentum for this section is (in
rationalized mks units)

2
o R*(x) %—;ﬁ Az,

which equals the sum of the surface tension and
electric forces. The surface tension force on the
exposed ends is given by the product of the surface
tension coefficient and the length of the line on which
it acts, in this case the circumference of the jet. This

force is
2rT R(x).

The total component of this force in the transverse

direction is
0é
z+ Az N (R az) z]

2WT[(R, g)

which reduces to

on a per unit length basis. The electric foree per unit
length on a grounded circular jet slightly displaced
from the center of a cylindrical high-voltage elec-
trode is’
2men®; 5

[@* — R@]{In [d/R@)}}"
Here ¢ is the permittivity of free space. Thus, the
equation of motion is

dR(z) 38

D* s 3’8
2,y 0 90 ;
pr R*(x) DE = 2rT R(x) Py + 2xT dx oz

211'60‘1);2) 5
(& — R*@)1{In [d/R@)]}*

+ (1)

In most studies of growing waves, an assumed
solution of the form f(t)e’*'* is substituted into the
equation of motion (1). The resulting ordinary
differential equation is then solved for the time
behavior in terms of the real wavenumber k.. If
the jet is not accelerated, this procedure indeed shows
whether a disturbance of given wavelength is stable,
but it is inappropriate here for two reasons: First,
the solutions do not have a simple exponential
form, due to the spatial variations of the velocity
and radius; second, the wavelength of the dis-
turbance cannot be specified by physical boundary
conditions if the flow velocity is greater than the
capillary wave phase velocity.’ Instead the time
behavior of the disturbance is determined by the
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ufx) -~
= R

5]

ELECTRODE -~

Fia. 1. The liquid jet, surrounded by a high-voltage electrode,
accelerates in the z direction under gravity.

upstream excitation, and we must solve for the
spatial behavior. Therefore, we assume

8 = S(x)e’ . (2)

The relation between these two approaches has been
discussed by many authors.””'* The time derivative
in the equation of motion (1) is the convective

derivative, which may be written as

Ds _ 35 a3

B2 rvwy, 3

correct to the first order in the perturbation. All
lengths are now normalized to the length of the
section under consideration, L, and all velocities
to the jet velocity at the entrance of this section,
V(z = 0) = V,, so that

T(z) = V{z)/V,.
All times are normalized to the ratio L/V,. The

equation of motion may now be written in normalized
form as

.
[U@) — @) 5=

d \dé
20, & \qldo
@) 2 R

— [N@) + 16 =0, (4)

where

+ {in U@x) + Ulx) (‘L'—"(;{iiv) -

N = = %@i\»{gﬁ
pUs °R*(x) {1 — [R(x)/d)’} {In [d/R(2)]}*’

(5)

o’(x) = 2T[p R(x)Us]™". (6)

From elementary mechanical considerations, the
velocity of the falling jet is given by

Ulz) = (1 + 8z), @)
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