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Steady electric and magnetic fields normal to each other and to the undisturbed surface are applied to a

film of poorly conducting liquid flowing down an inclined solid plane under the influence of gravity. This

combination of fields exerts a force normal to the undisturbed surface of the film which either stabilizes or

destabilizes the flow, depending on the relative directions of the two fields. This force is independent of the

orientation of the film, and thus can be effective in stabilizing the flow in a vertical or inverted film. The

electromagnetic force must be on the order of the gravitational force normal to the undisturbed surface to

be significant.

ATHIN film of flowing liquid forms an integral part of many

heat and mass transfer devices used in rocket nozzles,
boilers, and condensers. The report that the onset of flow
instability noticeably increases the heat and mass transfer of
these devices (3, 5, 7, 9, 73) has led many investigators to
examine the conditions which give rise to the various flow
regimes (2, 4, 77, 73, 74). In the past few years, research in
this field has been strongly stimulated by the development of
theoretical analyses which explain most of the important
features of the stability of thin films.

After Yih (77) and then Benjamin (7) attacked the basic
problem successfully with a series solution, Yih (75) reproduced
these results with a much simpler perturbation expansion in
the wavenumber. The effects of changes in the physical
properties of the flow were then investigated by Kao (70, two
fluids), Whitaker (72, surface active agents), and Yih (76, non-
Newtonian fluids). Most recently, Hsieh (8), in a study of the
thin film analog of the Hartmann flow, showed that a magnetic
field transverse to the flow direction can stabilize the film if the
ratio of the magnetic force to the viscous force (Hartmann
number) is very large.

In Hsieh’s paper, the current induced by the motion of the
liquid through the magnetic field interacts with the field to
exert a decelerating force on the basic flow. This method
suffers from two drawbacks. In many common liquids, the
conductivity, and hence the induced current, is so small that
the stabilizing force is negligible. In addition, since the force
is proportional to the velocity of the fluid, this effect can only
increase the critical Reynolds number by a factor which
depends on the Hartmann number. If the flow is unstable
for all Reynolds numbers, however, as in the vertical or in-
verted film, the flow cannot be stabilized.

In the present work, a force is exerted on the film perpen-
dicular to the undisturbed free surface by applying electric and
magnetic fields normal to each other and to the free surface.
Since the current flow in the film is determined by the applied
electric field, and not by the velocity, the film can be stabilized
in any orientation.

Description of System

A thin film of liquid (Figure 1) flows down an inclined (with
angle §) solid plane under the influence of gravity. The liquid
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has a density p, a kinematic viscosity », an electrical conduc-
tivity o, and a magnetic permittivity u. In the steady state
the film has a thickness d, and a velocity profile V(y), which
increases from zero at the solid to a maximum at the free
surface.

A constant electric field transverse to the flow, E,, drives an
electric current, J, across the film. The insulated surface of
the solid confines the current flow to the liquid. A constant
magnetic field, B,, in the flow direction interacts with the
current to exert a body force normal to the solid on the film.
The film surface suffers a small disturbance from this steady
flow given by

y =d[l + £x1)] M

Equations of the System

The equations which describe the flow are the Navier-
Stokes equation, modified to include the electromagnetic
force
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and the equation of continuity for an incompressible fluid
V-u=20 3)

Of the equations which describe the electric and magnetic
fields, only two are important here. One,

J=0¢E+ouXB 4)

describes the current flow in a moving medium. The first
term represents the well known conduction current caused
by an applied electric field. The second term states that the
motion of a conductor through a magnetic field generates
an electric current.  This term plays a key role in the stabiliza-
tion of a highly conducting film, as described by Hsieh (8).
Here, however, there is an external current source, and this
term only introduces complication into the analysis. For-
tunately, it will usually be small, and can be neglected entirely
under the condition

uB
— 1 5

For example, with the typical values

u = 10 cm. per sec.
~
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Figure 1. Thin film flowing down inclined plane under influence of gravity

Magnetic and electric fields are applied to exert a force normal to the plane

B = 1000 gauss = 0.1 weber per sq. meter
E = 100 volts per cm.
we find that

uB/E = 106

The second electromagnetic equation, Ampere’s law,

fB-dr =;;ffj-dA (6)

states that any current flow will set up a magnetic field. This
induced field can be neglected if it is much less than the applied
field, B, or if

poEqd
B,

K1 )

This inequality is easily satisfied because the film is so shallow.
For example, if

= 4r X 1077 weber per ampere per meter
= 10 mhos per meter
= 1 mm.

.« = 1000 gauss

bR QA E

we find for Inequality 7
po E,d/B; ~ 1073

These two inequalities can be combined to

uB,
Ry = poud K £ «1 (8)

a

where Ry, is the magnetic Reynolds number.
With the neglect of the induced current and magnetic field,
the electromagnetic force term in Equation 2 takes the form

(J X B), = oE,B, : )

This term, which is completely independent of the fluid veloc-
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ity, represents a constant body force similar to gravity. The
Navier-Stokes equations, written out in component form, are

Du+ a_u au_. 1_640 2. + in 6 (10)
Py uax+vay——pax+wu g sin a
dv 91) bl} ]?p ) 6+cE,,B,,
at+“ax+”ay' pay+qu+gcos

(10b)

where the velocity vector has been split into its two components
u=ui+oi, a1

The electric and magnetic fields in the bulk do not change
the boundary conditions on the flow—namely, the vanishing
of the normal and tangential velocity at the solid surface

u(y =d) =0 (12a)
vy =d) =0 (12b)

and the continuity of the normal and shear stresses at the free
surface

Ou % (12
g(y:f)+2v?—1)(y=f)=0 (12d)
P Oy )

Solution of Equations

To solve the equations we assume that the disturbance
consists of two parts, a steady flow in the x-direction, and a
small perturbation about this flow

u = UQ) + alxyh) (13a)

v = 9 (x,7,t) . (13b)

p = PO) + plxy.t) (13¢c)

Substituting this relation into the equations and neglecting
~
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all terms containing products of the perturbation quantities,
we obtain a set of linear equations, which are much easier
to solve. In particular, the perturbation terms can be de-
composed into fundamental solutions which take the form of
waves traveling along the film in the x-direction. The film is
then stable if each of these waves is stable.

In the basic flow the steady velocity and pressure are

gsmB

U@ = (@ — »?) (14)
P(y) = (pg cos 8 + oE,B,)y (15)

We now simplify the problem by ‘defining the dimensionless
quantities

¥y = (x,9)/d (16a)
*=t<u>/d (16b)

w*, v*) = (u, v)/<u> (16c¢)

R = <u> d/v = Reynolds number (16d)
p* = plogd)? (16e)

Fe = 0E.B,(pg) 7 = electric Froude number  (16f)
where
<u> = gd®sin 6/(3v) amn

and the stream function

o)
u* = a—j (18a)
0
v* = bt (18b)

The effect of an additional force normal to the plane, F,,
can be treated by adding it to the normal electromagnetic
force, 0EqB,, in the electric Froude number. (The author is
indebted to C. S. Yih for this suggestion.)

F, = (0E,B, + Fn)(Pg) !

The remainder of the derivation is then unaltered.

We assume as the basic solution wavelike disturbances
propagating along the film in the x-direction with a frcquency
w, a wavenumber «, and a phase velocity ¢ = w/a

Y(x*, y%, %) = Re [p(y*) £="=M] (19)

These assumptions reduce the problem to the solution of the
Orr-Sommerfeld equation

o' = 22" + ot p = iaR [(U — o) (0" — a%p) — U]

(20)

for the wave amplitude ¢(3*). The boundary conditions are
¢'(1) =0 (2ta)

e(1) = 0 (21b)

¢"'(0) + (o® = 3/0)¢(0) = 0 (21¢)

[a (3 cot 8+ 3F.csc 6)/2)p(0) +
a(R: + 3at)e’'(0) —ip’'’(0) = 0 (21d)
where ¢ = ¢ — 3/2,
Since the instability first occurs at wavelengths much greater

then the depth of the film, Equations 20 and 21 can be solved
by a perturbation expansion in the wavenumber of the form

=@ +apr+ ... (22a)
¢ =¢(o+ act + ... (22b)

This method, introduced by Yih (75), is sketched briefly in the
next few paragraphs.

Substitution of the perturbation expansion into Equations
20 and 21, and collection of all terms in which « vanishes give
the zero-order equation

6! = 0 @3)

with the boundary conditions

¢.(1) =0 (242)

0,/ (1) =0 (24b)

2" (0) — (3/2)¢,(0) = 0 (24c)
@'"'(0) =0 (24d)

Solution of Equations 23 and 24 gives the zero-order solution
o = (1 - }’)2 (25)
with the phase velocity
=23 (26)

Collecting all terms containing « to the first power gives
the first-order equation

o1 = RIU = 3" = U'lg,] @)

with the boundary conditions

er(1) =0 (28a)

#'(1) =0 (28b)

1" (0) — 2¢01(0) + 42,/3 = 0 (28¢)
2(cot 0 + Feesc ) — 3R — ip""'(0) = 0 (28d)

Solution of the first-order Equations 27 and 28 gives the
phase velocity to the first order as

6R
c=¢oF+aci =3+ ia I:?—cote—F,csc(i] (29)

The imaginary part of this dispersion relation, which indicates
the stability of the basic flow, contains three terms. The first
represents the viscous force which causes instability of the film.
The second term, representing gravity, tends to stabilize the
flow if 8 < 7/2 and to destabilize it if the film is inverted
(6 > x/2). The last term represents the electromagnetic
force.

Effect of Electromagnetic Force

The minus sign in the electromagnetic term does not mean
that this force always tends to stabilize the flow. The sign
results only from the choice of reference directions; reversing
either the electric or magnetic field will destabilize the flow.
This destabilization is impossible when the current is supplied
by induction; in that case the electromagnetic force always
tends to stabilize the flow.

The electromagnetic force, like that of gravity, is a body
force independent of the velocity of flow. Unlike gravity, it is
also independent of the inchnation of the film.” Thus the
electromagnetic force can stabilize the flow when gravity is
ineffective, as in the vertical film, or even when the gravity
tends to destabilize the film, as in\thc inverted film. If the
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Critical  Reynolds Number (R¢)

Inclination of Plane (8/x)
Figure 2. Stability of film

As the electromagnetic force, F., increases, the film is
stable over a greater range of inclinations. As Fe
decreases, the stable range also decreases

electric force is large enough (\Fel > 1), it will always dominate
the gravitational force for any inclination of the film. The
direction of the fields can then be selected to make the film
either unstable (F, < —1) or stable (F, > 1) for all orientations.
Under these conditions, the gravity affects only the critical
Reynolds number.

Another property of~the clectromagnetic force is that its
magnitude can be chz;}sged by changing the applied voltage
or magnetic field. This ‘enables a convenient control of the
fow stability and processes which depend on it, such as heat
and mass transfer. -

The effect of the electromagnetic force on the film stability
as the orientation varies is shown by the graph of critical
Reynolds number ss. angle.of inclination for different electric
Froude numbers (Figure 2). " At F, = 0, the electromagnetic
force is absent. For negative electric Froude numbers, the
maximum inclination for stability decreases, until at Fe = —1,
the film is always unstable. For positive F, the electromagnetic
force tends to stabilize the film, until at F, = 1, the film is
stable for all orientations. When the film is either level
(8 = 0), or inverted (§ = =), the liquid no longer flows, and
the system reduces to that of Rayleigh and Taylor (6).

Conclusions

The stability of a poorly conducting, falling liquid film can
be noticeably enhanced by the application of mutually perpen-
dicular and magnetic fields if the electromagnetic force is on
the order of the component of gravitational force normal to the
undisturbed surface. Since this effect is independent of
orientation, it can be used to stabilize the flow in a vertical
or inverted film. The action can be reversed by reversing one
of the fields, thus destabilizing the film and improving its
heat and mass transfer characteristics.
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Nomenclature

area vector, sq. meters

magnetic field, webers/sq. meter

w/a, dimensionless wave speed

c— 3/2

complex quantity

depth of film, meters

electric field, volts/meter

oEB(pg) 3, electric Froude number

9.80 meters/sec.?, acceleration of gravity
unit vector in x,y direction

V-1

electric current density, amperes/sq. meter
pressure, kg./meter sec.™?

pressure of basic flow, kg./meter sec. ™
<u>d/v, Reynolds number

critical Reynolds number

real part of complex quantity D
<u>dop, magnetic Reynolds number
length vector, meters

time, seconds

velocity of basic flow, meters/sec.

x,y components of velocity, meters/sec.
velocity vector, meters/sec.

gd* sin (3») %, average velocity of basic flow
spatial coordinates, meters
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GREEK LETTERS

dimensionless wave number

(54 =

0 = angle of inclination, radians

M = magnetic permittivity of liquid, webers/ampere/
meter

v = kinematic viscosity, sq. meters/sec.

¢ = dimensionless displacement of surface

T = 3.14159. ..

p = liquid density, kg./cu. meter

4 = electrical conductivity, mhos/meter

@ = y-dependent magnitude of stream function

v = stream function

w = dimensionless angular frequency

SUPERSCRIPTS

~ = perturbation about basic flow

* = dimensionless quantity

SUBSCRIPTS

0 = zeroth term in wave number expansion

1 = first term in wave number expansion

a = denotes an externally applied field
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