THE PHYSICS OF FLUIDS VOLUME 8, NUMBER 9 SEPTEMBER 1965

Growth and Excitation of Electrohydrodynamic Surface Waves
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Waves on the surface of a capillary liquid jet stressed by a steady applied electric field will grow
in space if the velocity of the jet is supercapillary. Experimental measurements of this growth rate

confirm previous theoretical discussions. The excitation of these waves by means of an applied
electric field with steady and time varying components is also studied theoretically, and the frequency
response is found to depend on both the shape of the electrodes and on the convective growth of
the waves due to the steady component of the field. The predictions of this theory are confirmed by

measurements on a water jet.

INTRODUCTION

THE last few years have seen a resurgence of
interest in surface electrohydrodynamics,’” a
field first investigated in the last century.’ Much
of this work has been concerned with the nature
of linear waves on liquid surfaces stressed by electric
fields, but little has been done on the methods of
exciting these surface waves. In this paper, we study
a method of exciting waves on the surface of a
liquid jet by means of electric fields and describe
several experiments designed to test the theoretical
predictions of exciter performance.

To gain familiarity with the nature of the problem,
we will first consider a wave propagating on the
surface of a jet stressed by a constant applied
electric field. Methods of exciting these waves by
means of time varying applied electric fields will
then be treated in varying degrees of complexity.
The simplest approach neglects the disturbance of
the jet due to the excitation and concerns itself
only with the net change in momentum imparted
to the jet by the exciting field. This is justified by
the good approximation it gives to the results of
both the experiments and a more detailed theoretical
approach which considers the effects of small dis-
turbances on the exciter response. Experiments are
carried out to measure the growth rate of the surface
waves as well as the response of the exciter. Both
of these measurements are in close agreement with
the theoretical predictions.

1. GROWING WAVES
A. Planar Jet

Consider a planar perfectly conducting liquid jet

of thickness A, density p, and surface tension T,

1J. R. Melcher, Field Coupled Surface Waves (The Massa-~
chusetts Institute of Technology Press, Cambridge, Mas-
sachusetts, 1963).

¢ N. K. Nayyer and G. 8. Murty, Proc. Phys. Soc. (London)
75, 369 (1960).

5 J. W. S. Rayleigh, The Theory of Sound (Dover Publica-
tions, Inc., New York, 1953), Vol. 1L.
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Fig. 1. The planar jet streaming to the right between parallel
high voltage electrodes.

unbounded in the y and z directions and moving
with a constant velocity V, in the z direction, as
shown in Fig. 1. A constant voltage ¢, is applied
to two flat electrodes parallel to the undisturbed
surfaces of the jet and separated from them by a
distance b. The entire system, which is uniform in
the y direction, is subject to a distrubance in which
both sides of the jet move together (the antisym-
metric mode).*

Although the problem contains both electric fields
and a flowing fluid, its description is simplified by
the fact that the electric and fluid flow fields are
coupled only at the surface of the jet, making it
unnecessary to solve for both fields simultaneously.
By treating them separately, the form of each may
be determined, and the arbitrary constants in the
solution obtained by matching the boundary condi-
tions at the surface of the jet.

The free-space region which contains the electric
field is described by Maxwell’s equations. In this
case the interaction is quasi-static, so that the mag-
netic field is negligibly small. Moreover, because the
fluid is highly conducting, all the charges relax to

4 G. Taylor, Proc. Roy. Soc. (London) A253, 289 (1959).
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the surface. The equations then take the form
V:E = 0, (1a)
V xE = 0, (1b)

which implies that the electric field is the gradient
of some potential function. The boundary conditions
on the electric field require that the perfectly con-
ducting surfaces of the electrodes and the jet be
equipotentials.

The jet is described by the usual equations of
motion for a nonviscous fluid, which are

pdv/dt = —Vp, (2a)
Vv =0, (2b)

in the bulk. The boundary conditions at the upper
and lower surfaces of the jet, including the additional
effects of surface tension and electric pressure, are

ni[p&f + 71— aiz'T/R:t”z==tA/2 + &= 0, (3a,b)
where 7;; is the Maxwell stress tensor
Ti; — EgEiEi - %60 [E|25”,

R, are the radii of curvature for the jet surfaces,
and n is the unit normal pointing out of the fluid.

To complete the specification of the problem, we
must define the surface geometry and the surface
normal. The surface is defined by its displacement
in terms of position and time.

F(xy 2, t) =T — 5(2, t) = 0) (4)
and the surface normal is given by
n = VF/|VF|. (5)

The fluid equations, linearized about the steady
state operating point

p = const, v = Vi,
are
ov’ av’ ,
”( s TV 62) = -V (62)
Vv =0, (6b)

where the primes designate perturbation quantities.
The basic solutions of these equations are waves
propagating in the z direction of the form

f,(xa 2, t) = Re [f(x) exp l(""t - kZ)], (7)

with the complex amplitudes

p = —(p/k)(w — kV,)A sinh kz, (8)
#, = A cosh kz, (9a)
9, = —1A sinh kz, (9b)

where the constant A4 is determined by the excita-
tion. The upper and lower surfaces of the jet are
defined by the equations

F=2F3iA—-¢kE1 =0, (10a, b)
respectively. Then, because
, o ot
Vloesnns = o+ Vo o (n

and from the definition of the surface normal
N, = ]_’ (123)
n, = —oF/oe, (12b)

the perturbed position of the surface is given as
£ = —ilw— kVy)'A cosh (3kA) (13)
for both the upper and lower surfaces of the jet.
Now that an expression for the surface of the
jet has been formulated in terms of the solution
of the fluid mechanical equations of the system,
it is possible to find the electric field in the free-
space regions above and below the jet. From the
boundary conditions,

6 =¢, at = x(b-+ 34A), (14a)
¢ =0 at = £3A 4§, (14b)

the steady-state electric field is
E, = £¢,/b (15a, b)

in the upper and lower region, respectively, and the
perturbed electric field is

¢, = kB cosh k(b + 3A — z)/sinh kb,  (16a)
¢, = ikE.£sinh k(b + 1A — 2)/sinh kb.  (16b)

Substitution of these solutions into the boundary
conditions on stress at the upper and lower surfaces
yields the dispersion relation

3
(@ — kVy)? = —Tpﬁ coth (3kA)

27,2
- ﬂp"—k— coth kb coth (3k4).  (17)

B. Circular Jet

These waves on the planar jet correspond to
similar disturbances on a circular jet, and since
experiments can be most easily performed on a
circular jet, we will present the dispersion relation
for this system. Consider a circular jet of radius R
concentric with a larger, perfectly conducting cyl-
inder of radius d held at the constant potential ¢,
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measurements the imaginary part of the propagation
constant was calculated. The result of one of these
tests under the conditions

R =159 X 107°m, T = 7.2 X 107 kg/sec’,
d = 3.52 X 10™°m, p = 10° kg/m?®,
V, = 5.65 m/sec, ¢, = 13.8kV,

is shown in Fig. 4. The agreement between the
experimentally measured points and the curve pre-
dicted from the theory is as good as the experimental
errors involved.

II. EXCITATION

A practical problem which must be faced in the
study of electrohydrodynamic surface waves 1S ex-
citation. These waves are electromachanical and can
be excited by either electrical or mechanical means.
In the work described here, all waves are excited
by a force produced by an alternating electric field
superposed on a steady field. If the velocity of the
jet is greater than the wave velocity, the disturb-
ances excited by this force will be swept down-
stream.

The physical arrangement of the system is shown
in Fig. 5. The exciter is modeled by two infinitely
wide, perfectly conducting parallel plates of length 1
on either side of the infinitely wide planar jet. The
plates are separated from the grounded fluid by
distances h, and h,, and potentials ¢, + e;(f) and
b0z — e:(f) are applied to the plates. The electric
force per unit area transverse to the jet can be found
by means of the relation

F, = 95 rom; dA (19)
and is
F, = '%‘fo[(‘btzn/h? - ¢§2/h§)
+ 2(¢oier/ B + bo28s/ hg)
+ (€i/h; — ex/ha)]. (20)

If the relation
¢o1/h1 = ¢'02/h2

is satisfied, the electric field will exert no net force
on the jet in the absence of a signal voltage, and
if the relation

e]/hl = ez/hz

is satisfied, the force will be linearly proportional
to the signal voltage. These conditions can be
satisfied by requiring that
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Fra. 4. Experimental and theoretical growth constant of
the electrohydrodynamic surface wave as a function of
frequency.

hy = hy = h, o = ¢o2 = oo,
so that the net force per unit area on the jet will be
F(t) = 2epoe(t)/R°. (21)
A. The Long Wavelength Limit

e, = e, = e(l),

In the interest of simplicity, we will consider the
long wavelength limit. In this special case, both the
thickness of the jet and the distance between the
grounded jet and the high voltage electrodes are
small compared to the wavelength of disturbances
on the jet. It is these assumptions which give rise
to the term “long wavelength limit”, and they enable
the analysis of the jet to be carried out on a quasi-
one-dimensional basis.

Consider a differential length of the system. The
forces acting on this length will be due to the surface
tension of the jet and to the electric field between
the jet and the electrodes. The total force per unit
area on the jet due to surface tension will be propor-
tional to the total length of exposed surface edges,
the surface tension coefficient 7', and the curvature
of the jet;

F, = 2T 8°%/07". (22)
The factor of 2 occurs because the jet has two sur-
faces. The net electrical force per unit area on the

T X
NN

Fie. 5. The planar jet flowing through the uniform field
exciter.
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Fi1a. 2. Grounded circular jet streaming through a coaxial
high voltage electrode.

as shown in Fig. 2. In this case, the perturbation
contains a factor of the form e’ which expresses
the 6 dependence of the solution. The condition
of periodicity in the 6 direction requires that m
assume only integral values, m = 0, 1, 2, ... which
shows that the disturbance consists of an infinite
number of circular modes. The dispersion relation
for the mth mode is given by

2 T 1
(= EVo" = Ops [K“@e‘)]

AT + Sa(kR, kd)] — (1 — m*) + (kR)*}, (18)
where

L JaikR)
K, (kR) = (GkR)J (ikR) ’

Sn(kR, kd)

B .kR[H,,’,(ikR)J,,,(ikd) —~ H,,.(ikd)J,,’,(ilcR):l
= " H,.GkR)J,.(ikd) — J.GkR)H,.(ikd) |’

I' = eps/RT[In (d/R)]).

Here J,, is the Bessel function of the first kind, and
H,, is the Hankel function of the first kind.

These dispersion relations have been thoroughly
discussed elsewhere' and will not be treated here
to any great length. It is sufficient to note that for
certain real values of frequency the propagation con-
stant &k will have complex values with positive
imaginary parts, which in this case indicates a wave
growing in space. With an electric field applied to
the jet, this growth occurs for all frequencies less
than some cutoff frequency if the jet is flowing
faster than the capillary velocity of the surface waves.

C. Experimental Results

Although the cutoff frequency has been measured
as a function of the applied electric field in Ref. 1,
no measurements of the magnitude of the growth
constant, k;, have been carried out. In order to
measure this quantity, the experiment shown in
Fig. 3 was performed.

CROWLEY

A jet of tap water issues from a circular nozzle
beneath a constant head of water maintained by an
overflow system. The velocity of the jet at the
nozzle is in the range 2-5 m/sec. After leaving the
nozzle, the jet passes through the exciter, falls a
distance on the order of one meter, and then flows
into a mesh of wire screening, where it is brought
to a stop without splashing. (Any splashing of the
jet will set up vibrations on the apparatus which can
be communicated back to the exciter, nozzle, and
overflow tank. This feedback path results in breakup
of the jet and hinders accurate measurement.)

For the derivation of the theory presented here,
we must assume that the velocity of the jet is con-
stant, an assumption which is obviously untrue for
a jet falling in a gravitational field. As the jet falls,
its velocity increases, and from the conservation of
mass, its radius must decrease. Both of these effects
will influence the growth rate of the waves. The
theoretical predictions for all the experimental work
were calculated for the average conditions of the
region under consideration.

In this experiment, the region downstream of the
exciter was surrounded by a cylindrical glass elec-
trode with a conducting coating maintained at a
constant high voltage. Spherical electrodes were used
for the exciter in order to set up a nonuniform
electric field and thus obtain a smooth exciter
response curve, as discussed in Sec. II. Photographs
of the jet were taken with the aid of a strobotach-
ometer and the amplitude of the waves measured
as a function of distance along the jet. From these

GROWTH
REGION

Fiq. 3. Experimental apparatus, showing the reservoir,
exciter, and growth region.



1672 JOSEPH M.

jet, found by integrating the Maxwell stress tensor
over the surface, is

F, = Qeo/R)[E/h + e()/$0]. (23)

Now apply Newton’s law to the differential length
to obtain the equation of motion of the jet

) a\, 2T 3%
(at + Vo az)f T pA 8

2€0¢§
pAR®

£+ 2604’0@(0 . (24)

+ pAh2

If the time-varying voltage is

e(t) = Re [ee™'],

w/Vo = i[(2et/pAR°VE)(L — 2T/pAV5) — 20°T/pA Vo]

CROWLEY

then the displacement can be expressed as
£ = Re [E@e'),
and Eq. (24) becomes

@i dE
(pAVG — 2T7) d—z‘g + ZZPAV"“’ZE
2

B (PAw2 + 2;:);?2>£ - 2%26—0 @)

which has a solution of the form
é(z) — Ae—ik+z _|_ Be—ikfz + C,

where k, satisfies the dispersion relation

(26)

k. =

which is equivalent to Eq. (17) in the long wave-
length limit (kb — 0, kA — 0). The boundary
conditions

£0) =0, (272)

dé y ¢
L) = ivk0) + Vo 2 @) =0, (@)

determine the displacement at the exit (z = I)
Eley = (CU/AV) (1 + v/a)!

-le"*"*(cosh k;l + (ik./k;) sinh k1) — 1], (28)
and the velocity at the exit
B/e, = (C/4a’)(1 + /o)™ {20

-[(cosh k1 + (ik./k;) sinh k;D)e™ ™" — 1]

+ e (k2l/k;) sinh k;l -+ kI sinh 1]}, (29)
where

C = 2eol(pAR° V)™, v = epol’(2pAR° V)Y,

a = wl/2V,.

B. A Simpler Approach

Problems of this sort are complicated by the
interaction between the surface and the electric field
perturbations. For the exciter, however, this restric-
tion may be relaxed if the forces due to the perturba-
tion of the shape of the surface are much smaller
than the force set up by the change in the applied
electric field. Under these conditions the force on
the surface is independent of the surface perturba-
tions, and the equation expressing conservation of
momentum for a differential length of the jet may
be written as

(1 — 2T/pAVY) ’

pAvg )
f d(pAn) = f 3%—“—‘)(1;. (30)
0 —1/Va

For a sinusoidal signal voltage, the exit velocity is
$,/¢ = C(sin a/a) exp (—ia), 31)

which is equivalent to the velocity obtained by
taking the limit of Eq. (29) as T — 0 and ¢, — 0.
Two features of this response deserve mention. The
first is the existance of minima in the response at
the frequencies @« = nw. At these frequencies, the
jet passes through the entire length of the exciter
in a time equal to an integral multiple of one cycle
of the input signal. Since the force varies sinusoidally
and the net velocity is approximately equal to the
integral of the electric force over the time the jet
spends in the exciter, the exit velocity is very small.

Also, the response falls off at higher frequencies
because the integral of the force is very small after
one period of the exciting voltage and the signal
up to this time is “wasted.” Thus, at higher fre-
quencies the exciter, which is longer than a wave-
length, is effectively shortened, and the magnitude
of the response drops accordingly.

The velocity of the jet at the exit of the exciter
as predicted by the approximate and the long wave-
length approach is plotted in Fig. 6. At very low
frequencies, growing waves exist inside the exciter
which amplify the response to (sinh k;l)/k;l times
its value when the waves were neglected. For higher
frequencies, the waves no longer grow, and their
effect is to shift the frequencies at which the maxima
and minima of the response occur. In most physically
realizable exciters, however, these effects are slight.
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Fic. 6. Normalized transverse velocity of the jet at the
exciter exit. (y = 0.695.) The magnitude of the disturbance
downstream of the exciter is determined primarily by this
velocity.

C. A Nonuniform Field Exciter

We have seen that the parallel plate, planar
exciter exhibits a series of minima in the frequency
response. When the exciter is used experimentally
to produce waves over a broad frequency range,
these minima become objectionable, as they make
it difficult to excite waves at some frequencies. In
previous experiments, it has been noticed that the
use of two spherical electrodes in place of the
parallel plate electrodes resulted in a much smoother
frequency response, probably because of the non-
uniformity of the electric field. In order to analyze
this situation theoretically, a new two-dimensional
exciter model was studied. In this model, the parallel
plate electrodes were replaced by two infinite cyl-
inders, as shown in Fig. 7. Using the simpler model
of the exciter as described in Sec. II B in which
the surface tension and steady electric force are
negligible, the equation of conservation of momen-
tum can be applied to find an approximation to the
velocity response of the jet.

To apply the equation, we must know the electric
field at the surface of the jet, which can be de-
termined by the solution of the electrostatic equa-
tions in the bicylindrical coordinate system® defined
by

a sinh g

= Cosh n — cos 0’ (322)
asin @

# = Goshy — cos 6’ (32b)

y=y. (32¢)

With the same conditions on the voltages and separa-
tions as in the planar exciter, the force per unit area
as a function of the longitudinal position on the
jet (9) is

s P. M. Morse and H. Feshbach, Methods of Theoretical

Phys;'cs (McGraw-Hill Book Company, Inc., New York,
1953).
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Fig. 7. The planar jet flowing through a nonuniform field
exciter.
[2e,(1 — cos 6)°poeoe™ " 1/ ng.

In this expression, 7, is the value of 5 which de-
termines the position of the exciter electrode

70 = cosh™(w/r),

where r is the radius of the cylindrical electrode,
and w is the distance from its center to the surface
of the jet. From the transformation equations

z = asin 6/(1 — cos 6),

dz/dt = Vo,

(33)
(34)

and the equation of conservation of momentum, the
velocity response is given as

0:/ € = (éo¢'o/ PAaTlg VO)I (wa/ Vt)), (35)

where
I{a) = f (1 — cos 6) cos [esin §/(1 — cos 6)] d6.
0

A plot of I(a) versus a is shown in Fig. 8. This
response curve does not exhibit the series of peaks
and nulls characteristic of the parallel plate exciter
but falls off steadily with increasing frequency, ap-
proaching zero asymptotically. The electric field
associated with this exciter arrangement does not
have any sharp changes or discontinuities in space,
so that the jet in passing through the exicter sees
a continuously changing field strength. From these

Fia. 8. Response of the nonuniform exciter, showing the
normalized transverse velocity at the exit.
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$=dote(t)

$=¢o-elt)

Fic. 9. The exciter for the circular jet in cross section.

results it might be inferred that a sharp discontinuity
in the field is necessary to give peaks and nulls
in the response curve, and a field which varies
smoothly in space will give a response which falls
off monotonically with frequency.

D. Excitation of Waves on a Circular Jet

So far we have been concerned exclusively with
a two-dimensional planar jet. While a planar jet
lends itself easily to theoretical analysis, it is ex-
tremely difficult to realize in the laboratory. A
cylindrical jet, however, is easy to produce, and
its theoretical analysis, while not so straightforward
as that of the planar jet, is entirely possible. Just
as we were concerned only with the antisymmetric
mode in the discussion of the planar jet, we shall
only consider those motions of the circular jet in
which the cross section of the jet remains essentially
unaltered, so that the jet moves uniformly in the
direction transverse to the downstream direction
(the mode m = 1).

The physical arrangement of the system is shown
in Fig. 9. In the region downstream of the exciter,
the outer electrode is at a constant potential, and
the jet is grounded. In the exciter, the outer electrode
is split into two semicircles, one at potential ¢o + ¢,
and the other at potential ¢o — ¢,. This difference
in the two potentials leads to a force per unit
length on the jet in the exciter region, which can be
calculated using the Maxwell stress tensor. This
procedure gives

P BeooPs .
Fu = Jm d/R)1 — B&) (36)

The force per unit length due to surface tension
may be calculated by considering a short section
of the circular jet displaced as a whole from its
equilibrium position. The total equilibrium tension
on the jet is given by the product of the surface
tension and the length of the line on which it acts

and by a process similar to that used for a string
under tension,
F= 2xRT 8°t/92". (37)
There will also be a force on the jet due to its dis-
placement from equilibrium in the steady state
electric field. This force has been calculated else-
where in connection with electrical capacitors® and
is given as
F../t = 2rede(d® — R*)™'[In d/R)]™*. (38)
With these forces, the equation of motion of the jet is
2 (2 6_)2 - %
il ”(at + Vg, £ = 20BT 5
. 21re0¢>§£ + Begdodr
T @ = B)(nd/R)’ " d(in d/R)(1 — R*/d’
and the exit displacement is
é/d)l = (Ccl/4V0)a_2(1 + ‘Yca_z)—l
-[e™*(cosh k;l ++ (ik./k;) sinh k) — 1], (40)
where
(w— kVy)® = (2Tk’/ pR)
— e/ (pR*(d* — RY)(In d/R)"),
Yo = el [20R*(d — R*)(n d/R)Ve]™,
C, = Sedol[VoprR*d(1 — RB*/d*)In (d/R)1™".

Although this equation has been derived on an
intuitive basis, it can be shown that in the long
wavelength limit it is consistent with the previous
exact result, Eq. (18). Except for multiplicative
constants, it is the same result as the long-wave
solution for the planar jet.

) (39)

E. The Downstream Response of the Jet

The continuity of the displacement and slope at
the exit of the exciter determines the disturbance
downstream of the exciter, which satisfies Eq. (39)
with the steady state voltage set equal to zero.
By writing the downstream displacement in the form

é = [e(& + ikrso)(k’z)"l sin k'z + &, cos k’z]e_”’",
(41)

where £, is the exit displacement, £ is the exit slope,
and &' = ik, with ¢, = 0, we can see that it consists
of two waves, one excited by the exit displacement
and one by the exit velocity.

If k&' is real, a stationary pattern of waves is set
up on the jet. This pattern may be considered as

s P. Moon and D. E. Spencer, Field Theory for Engineers
(D. Van Nostrand, Inc., Princeton, New Jersey, 1961).
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the superposition of two forward traveling waves,
the slow wave with a propagation velocity slightly
less than the jet velocity, and the fast wave with
a propagation velocity slightly greater than the jet
velocity. These two waves interact to give a wave
pattern which is stationary in space, in much the
same way as two waves with slightly differing fre-
quencies interact to give the phenomenon of “beat-
ing” in time. If &’ is imaginary, the fast and slow
waves become decaying and growing waves. At some
distance from the exciter the decaying wave becomes
negligible, and the only disturbance on the jet is
an exponentially growing wave. It is this wave which
was studied to obtain measurements of the growth
rate in Sec. I.

F. Experimental Results

Two types of measurements were made to test
the theory of the exciter. The first was a measure-
ment of the frequencies at which the minima in the
response curve occur. To make these extremes evi-
dent, especially at the higher frequencies where the
response of the exciter is small, an electric field
large enough to cause growing waves was applied
to the jet downstream of the exciter. The signal
frequency was then adjusted until the disturbance
reached a minimum and the frequency measured
with an electronic counter. The results of this meas-
urement are plotted in Fig. 10. The scatter around
the theoretically predicted position of the minima
may be partly attributed to the zero slope of the
response curve at these points. From these data,
we can conclude that the exciter does have the pre-
dicted minima in its response curve.

The response of the exciter as a function of fre-
quency was also measured. Photographs of the jet
were again taken with the aid of a strobotachometer
flashing at twice the frequency of the signal voltage.
Measurements of the amplitude of the wave versus
the distance along the jet were made from these
photographs and the results plotted. These plots,
one of which is shown in Fig. 11, indicate that the
displacement response is sinusoidal in space, with
the wavelength of the sinusoid decreasing as the
frequency of the signal increases, as predicted by
Eq. (41). From these plots the displacement response
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F1e. 10. Frequency of the first three minima in the exciter
response.
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Fig. 11. Measurements of the amplitude of the displace-
ment versus distance from the exciter exit for different
frequencies, showing the effect of standing waves.

of the jet at any particular position may be found.
The values of the displacement were read from
the graphs at a distance of 25 em from the exciter,
and these displacement values were plotted versus
frequency to find the frequency response of the
exciter. One of these plots, for the conditions

=14 X 10"% m, V, = 3.26 m/sec,
R =1.59 X 107° m, p = 10° kg/m?,

is shown in Fig. 12. Again, there is good agreement
between the predictions of the theory and the
experimental measurements.
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